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1 Introduction

The CRUNCH suite of atomic and molecular structure calculation programs has been worked on by students
and faculty at the University of Nebraska over several decades. Using FORTRAN, the project was started
in the late 1960s. Over the years sections were added in that language until 1988-1992 when a transition
was made to C, for greater ease of use in a UNIX® environment. Development has continued until today,
with usage currently limited to UNIX® platforms.

A comment concerning the name seems appropriate. As the program segments were originally being
written in the late 1960s, one of the computing center operators dubbed them “Cap’n Crunch®” morsels
(the breakfast cereal was new at the time) because of their hogging of computer resources. The name stuck,
but without the “Cap’n”.

These programs can be used to calculate, for a particular geometry, wave functions and energies at a
number of levels of theory. These include restricted Hartree-Fock (RHF) for closed-shell species, restricted
open-shell Hartree-Fock (ROHF), unrestricted Hartree-Fock (UHF), multiconfigurational self-consistent field
(MCSCF), and configuration interaction (CI) using either orthogonal or nonorthogonal orbitals. (These two
types of CI are often called multireference CI (MRCI) and multiconfigurational valence bond (MCVB)[1],
respectively, and are sometimes referred to as orthogonal CI and nonorthogonal CI in the remainder of
this manual.) Several smaller sections provide properties such as orbital and wave-function values and
electron density, second-order Mgller-Plesset (MP2) energies, electrostatic moments, and, in addition, dipole
transition moments. Configuration population may be analyzed and natural orbitals may be computed from
the CI calculations. The MCVB outputs can, when desired, be converted to a Heitler-London-Slater-Pauling
(HLSP) valence-bond basis. A simple, but robust, optimizer is also included so that geometry (and other)
optimizations can be performed. Many of the more common methods are described in reference [2].

Highlights of Unique or Noteworthy Features

e The CI modules can handle either orthogonal or nonorthogonal orbitals in the configurations.

e The sophisticated configuration selector makes explicit use of the symmetric group to directly enforce
electron antisymmetry on individual configurations and will also carry out spatial symmetry projection
so that the Hamiltonian matrix may contain one or more symmetry species.

e Hartree-Fock states for the lowest energy of each symmetry species (not just the ground state) may be
determined. State averaging is also available at the Hartree-Fock level.

e Heitler-London-Slater Pauling valence-bond states can be obtained from the MCVB results.

e (Calculations of systems with cylindrical symmetry may be performed in the continuous linear point groups,
Coov and Doy, at many levels. Hartree-Fock treatments of atoms in full spherical symmetry are supported.

In contrast to many monolithic quantum chemical suites, CRUNCH is organized as a number of inde-
pendent modules, each of which is an executable that can be run by itself. This provides the user with
maximum flexibility in composing a particular calculation. However, in normal practice one uses the C-shell
script, crunch, that is provided to make a computational sequence more automatic and easily repeated.
Nevertheless, even script users must have sufficient knowledge to be able to use the modules in the correct
order. The example problems and the recent monograph([3] are especially recommended.

The modules in CRUNCH may be sorted or classified in a number of ways. For the new user it is perhaps
most helpful to initially focus on those which provide core functionality, deferring consideration of secondary
modules which calculate properties and others which perform utility or support duties. This three-fold
division pervades the remainder of this manual. However, before taking up the details of input preparation
for the most central modules, the next section continues with a brief description of the basic functionality
of all of the modules. There follows, then, some general comments concerning usage and input files and an
important discussion of the use of symmetry throughout CRUNCH.

2 Functionality by Module, Briefly Described

Primary Modules:
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The principal CRUNCH modules can be divided into those involving integral generation, Hartree-Fock
(HF) calculation, orbital transformation, configuration selection and symmetry projection, orthogonal and
nonorthogonal CI, matrix eigensolution, and parameter optimization. We list here each module with a
more-or-less mnemonic title and a short description.

Integral modules

lobeWat Lobe Gaussian integrals. Produces one- and two-electron integrals for atoms and molecules using
lobe Gaussians.

atmintc Atomic Slater integrals. Produces one- and two-electron integrals for single atoms using Slater
orbitals.
Hartree-Fock modules

gscfnn SCF calculation. Uses the products of either of the integral programs to carry out a spin-restricted,
closed- or open-shell Hartree-Fock (RHF or ROHF, combined in the acronym R(O)HF for brevity)
calculation. It can determine the lowest energy and wave function of each symmetry type. State-
averaged wave functions may also be obtained. Multipole electrostatic moments are also determined.

mxsscf Maximum-spin R(O)HF calculation. This alternative allows greater user control over convergence
for systems in which the total spin is the largest allowed by the number of singly occupied orbitals
(including closed-shell systems).

uhfnn UHF calculation. This performs a spin-unrestricted Hartree-Fock calculation.

Orbital-transformation modules

matmld Orbital matrix melding. Combines multiple orbital basis sets to prepare for the transformation
of integrals in terms of atomic orbitals (AOs) to integrals over molecular orbitals (MOs).

trannn Integral transformation. Transforms one- and two-electron integrals over atomic orbitals to inte-
grals over molecular orbitals (or even more general, user-specified orbitals).

ctran Transformation to complex orbitals. A special-purpose integral transformation program for systems
of cylindrical symmetry (Cooy Or Deop)-
Configuration and symmetry module

symgenn Symmetry generation and configuration selection. Generates a set of symmetry-restricted con-
figurations for use in a CI calculation. Supports both discrete and continuous (Cuooy or Doon) point
groups.

Orthogonal-orbital configuration-interaction modules

mp2 MP2 calculation. Carries out a Mgller-Plesset, second-order perturbation correction of R(O)HF wave
functions.

omtrcIII MRCI matrix generation. This is the current orthogonal-orbital CI matrix generator. It sup-
ports discrete and continuous point group symmetries.

mcscf MCSCEF calculation. Performs a multiconfigurational, self-consistent-field calculation.

Nonorthogonal CI matrix module

nomtrcII MCVB matrix generation. The current nonorthogonal-orbital CI matrix generator, this sup-
ports discrete and continuous point groups.

CI eigensolution modules

neweig Small CI matrix diagonalization. Produces a requested number of lowest energy eigenvalues and
eigenvectors. Not suitable for large matrices but capable of delivering all roots.

beigII Large CI matrix diagonalization. Produces a small number of the lowest energy eigensolutions,
but is suitable for larger matrices.
Parameter-optimization module

smplxtrdg Simplex optimization. A simple but robust optimizer often used for geometry optimization,
but capable of optimizing any input parameter.
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Secondary Modules:

Modules which calculate properties or interpret the results of the principal CRUNCH modules can be divided
into those concerned with orbitals, those which deal with SCF wavefunctions, and those which follow CI
calculations. More extensive documentation for these modules will be included in later versions of this
document. Meanwhile, consult the usage statements printed when the module is invoked without additional
parameters.

e Orbital property modules

ptgorbv Orbital value, Gaussian basis. Calculates the value, at a point, of a single Hartree-Fock orbital
in a Gaussian basis.

ptsorbv Orbital value, Slater basis. The same as ptgorbv, except for a primitive Slater orbital.

mpole Orbital multipoles. This module, not generally run independently, is automatically called before
several of the multi-electron property modules to supply the one-electron, orbital-multipole integrals.

mcdip Orbital multipoles. This is an alternative to mpole used (automatically) by several of the multi-
electron property modules.
e SCF property modules

ptgpot Potential, Gaussian basis. Gives at a specified point the electrostatic potential of an R(O)HF
wave function composed of Gaussian orbitals.

ptspot Potential, Slater basis. The same as ptgpot, except for a wave function in a Slater basis.

ptscrgden Deunsity, Slater basis. Gives at a specified point the charge density of an R(O)HF function in
a Slater basis.

dipole R(O)HF multipole moments. Although a separate module (which the user can call directly), this
is called automatically after the primary module, gscfnn, to provide static multipole moments for
R(O)HF functions.

udipole UHF multipole moments. The same as dipole, but for UHF functions.

e CI property modules

vbmpole CI multipoles. Calculates electrostatic multipole moments of either a nonorthogonal or orthog-
onal CI wavefunction by a more rapid direct method.

vbdnsty CI multipoles via the density matrix. Calculates the first-order, spin-free density matrix for a
CI wave function and then uses this to obtain the natural orbitals and the electrostatic moments.

tranmom CI transition moments. Calculates transition dipoles between orthogonal or nonorthogonal CI
states.

egsopop EGSO population. Computes the eigenvector-guided sequential orthogonalized population anal-
ysis (see [3], Sect. 1.4) for the results of either a nonorthogonal or orthogonal CI calculation.

hlspvb HLSP decomposition. Transforms a CI eigenvector into Heitler—London-Slater—Pauling perfect-
pairing functions (see [4]).

Support Modules:

The final class of modules are those which provide support functions such as input preparation, output
manipulation, interface to other suites, and other stand-alone features. These will also have more extensive
documentation in later editions of this document. Users are again referred to the usage statements.

e Input preparation modules
mkscf SCF input preparation. An aid to creating input for the various Hartree-Fock programs especially
useful for specifying orbital symmetry.

mklpscf SCF input preparation for linears. A similar module for calculations in the C.., and D point
groups.

synp Input preparation for symgenn. Helps to produce the generalized permutation table which specifies
orbital symmetry in the configuration generator.
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symgerr Error detection for symgenn. Run automatically after the configuration generator, this checks
for errors in the configuration list, allowing the input to be corrected without wasting time generating
a defective CI matrix.

e Qutput manipulation modules

get-ao-tran AQO transformation table. Extracts from the lobeWat output the table giving the trans-
formation of the AO basis under the operations of the point group. Useful for preparing input to
mkscf.

get-e-order Energy order of R(O)HF orbitals. Extracts the global energy order of the orbitals (and
corresponding symmetry labels) which are otherwise ordered by energy within symmetry species and
displays them in a convenient format.

prontmos R(O)HF orbitals. Reads a binary molecular-orbital file and displays its contents in a convenient
format, either ordered by orbital energy or symmetry species. Called automatically after mxsscft.

prths H and S matrices. Extracts from their binary files the Hamiltonian matrix and, if present, the
overlap matrix for a CI problem.

prthsv H, S, and eigenvector matrices. Same as the previous, but also prints the eigenvector matrix.
stats Problem statistics. Prints selected information from outputs sharing a file-name prefix.

bigtab Tabular eigensolutions. Sorts through a CI vector produced by beigII and displays the largest
contributions in a convenient form.

fndsymfun CI symmetry functions. Extracts from the list produced by symgenn the symmetry function
specified by the user and displays it in a convenient form.

e Intersuite communication modules

zmat Z-matrix conversion. Converts a molecular geometry from Z-matrix form (see [5], sect. 3.3) into
Cartesian coordinates for lobeWat input.

gmscnv Orbital conversion from GAMESS. Reads the MOs produced in an R(O)HF calculation with the
GAMESS|6] suite and writes them into a binary file readable by CRUNCH.

e Miscellaneous utility programs and scripts
cmpt Compare times. Warns if input files are newer than output files.

1nkfls Link files. Makes symbolic links so that a single AO integral set can be used for multiple calcu-
lations with different file-name prefixes. Saves the space required by copies and the time consumed
in recalculation.

modfls Modify files. Renames a complete set of input files to a new file-name prefix. Useful for starting
a new problem similar to an existing one.

3 General Comments on Usage and Files

Although referred to in this manual generically as “modules,” the computational pieces of the CRUNCH
suite vary dramatically in size and complexity. In fact, some are small shell scripts and even some of the
compiled codes, especially those outside of CRUNCH’s core capabilities, are expected to be called directly
from the command line. Typing the name of the executable with no additional parameters produces a short
usage statement.

Although all the principal modules can be invoked in the same way, those which are commonly used
successively to perform common types of calculations can also be invoked in order with the executable
crunch script. Its usage statement describes the modules supported.

Usage: crunch -[ciahxujtCsSPo0XmMebvVdDTRz] <prefix>

-c (Cleans intermediate and output files from working directory
-i Lobe Gaussian integrals

-a Atomic Slater integrals

-h SCF[R(D)HF] calculation
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-x Maximum-spin R(0)HF calculation

-u UHF calculation

-j Orbital matrix meld

-t Transform integrals

-C Complex integral transformation for linear pt. grps.
-s Symgen for discrete point groups

-S Symgen for linear point groups

-P MP2 calculation

-o Orthogonal-orbital CI-matrix generation, discrete pt. grps.
-0 Orthogonal matrix generation for linear pt. grps.

-X MCSCF calculation

-m Nonorthogonal matrix generation, discrete pt. grps.
-M Nonorthogonal matrix generation for linears

-e Eigenvalues of small CI matrices

-b Eigenvalues of CI matrix by large matrix method

-v Heitler-London-Slater-Pauling weights of a CI vector
-V EGSO analysis of a CI vector

-d Faster method for electric moments of a CI vector

-D Natural orbitals and moments of a CI vector via density matrix
-T Dipole transition moments for CI vectors

-R Runs a reader on .out files in reverse order

-z Converts Z-matrix to Cartesian geometry

The -c option deserves special comment. The first step in diagnosing and remedying errors or unexpected
behavior is beginning again with a fresh start; clean early and often.

Note also that the options are intended to be concatenated. For example, assuming that all of the
appropriate input files (whose names begin with hf) had been constructed for the HF molecule, the command:

crunch -ihtsme hf

would be used to perform a nonorthogonal CI calculation, starting with the Gaussian integrals and finishing
with the matrix eigensolution. One must be familiar with the theory of such calculations to know the proper
order in which the programs must be run. (Although, more often than not, it is the order in which the
modules are described in this manual.) Examples of a large number of ab initio valence bond calculations
are given in a recent book.[3] In addition, the examples provided with CRUNCH exercise each of the modules
and illustrate many of the types of calculations which are possible by employing the modules successively.

The CRUNCH modules communicate with one another through disk files, and each has one or more
input files and one or more output files. Some of these are plain text files and some are binary; some are
user-supplied and some are automatically generated for intermodule communication; some are optional and
some are required. Nearly all of the disk files provided or produced have file names with a particular structure
(exceptions are noted later), having a prefiz, a suffiz, and an extension.

prefix This is a set of letters or characters of the user’s choice that identify the problem. All of the characters
must be taken from the set of legal UNIX® file-name characters. The prefix may end in a period, which,
however, is considered part of the prefix.

suffix This is a set of three or more letters unique to the module producing it or the information stored in
it. These are predetermined in the programs and must be adhered to.

extension This is a set of one or more letters or numbers following a required period. For those modules
requiring a user constructed input file, the extension is generally .inp.

As an example, we note that the suffix for the first module commonly run is lob and it requires a user-
constructed input file and produces a text-format output file. Therefore, if we were making calculations of
the molecule HF, an acceptable file name for the input to this program would be hflob. inp and the module
would create a hflob.out file.

In the sections of this manual describing each module in detail, tables are given with the file names and
a brief description of their contents. Primarily a reference guide to insure that the user correctly supplies
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the required input files, these tables may also aid in discerning the order in which the modules are to be
invoked.

Comments on Input File Format:

The user-constructed files can be produced by any editor that adheres to the UNIX® convention for a
new line. With a few exceptions, only user-constructed input files have the .inp extension, so if we speak
of a .inp file below (or, e.g. a lob.inp file or <prefix>lob.inp file), the reader may generally assume it is
to be produced by hand with an editor. CRUNCH has relatively few built-in defaults. Again, this provides
maximum flexibility. The disadvantage, of course, is that it also provides considerable scope for errors in
the input. Not only can these lead to incorrect results, but segmentation faults or other system malbehavior
may even occur.

The input files we have been describing allow the inclusion of comments. These all start with either
a # or a ; character, which may be placed at any position in the line, and continue until the end of
the line. The comments are allowed anywhere with a few exceptions, where they cannot appear before a
required title at the beginning of the dataset. In following sections the instances of this restriction are noted.
Unless otherwise stated, all numbers and strings in the input are in free format, with spaces or new-lines
separating them. (When maximum string lengths are not specified, the underlying data structures have
been dimensioned to sizes well in excess of what is expected to be necessary.) As with the input to all
C programs, white-space separated data in a prescribed order can have new-lines arbitrarily interspersed
without ill effect. Nevertheless, clarity suggests that certain data lines not be split. In the following module-
specific descriptions of the input-file format, sensible groupings are given. In addition, constraints on format
and range of values are specified. Unless otherwise noted, all positions, distances, and energies are to be
given in atomic units.

A list of the principal input files required by each module is given for reference in Table 1. (Modules
missing from the table require no input file. A few additional, optional input files (generally used to access
special, less common features) are described later.)

Table 1: The principal input files read by CRUNCH.

Module Suffix. Extension
lobeWat lob.inp
atmintc atm.inp
gscfnn scf.inp
mxsscf scfx.inp
uhfnn uhf.inp
matmld mld.inp
trannn trn.inp
ctran ctrn.inp
symgenn sym.inp
mp2 mp2.inp
mcsct mchf.inp
beigll big.inp
smplxtrdg plx.inp

This manual continues with an important and general discussion of the use of symmetry in CRUNCH
and its specification in the input files. Impatient users are warned against neglecting it. Following this, we
discuss in more detail each primary module with particular emphasis on the preparation of correct input
datasets.

4 Symmetry in CRUNCH

The use of symmetry can, of course, improve the efficiency of molecular and atomic calculations dramatically.
The description of symmetry and group theory as it impacts electronic structure calculations is a voluminous
topic and, of necessity, only a brief description can be given in this manual. Nevertheless, even here,
considerable space is required to give a detailed description of the use of point group theory in the CRUNCH
modules.
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Those familiar with other quantum chemical packages will note that many restrict their automatic sym-
metry analysis to Abelian groups, i.e. those groups for which all operations commute in pairs. CRUNCH
is more flexible, at some cost of automation and ease of use, and the different modules vary considerably in
their abilities to deal with non-Abelian groups. However, there is normally no reason that an appropriate
subgroup cannot be used at each stage of a sequence of CRUNCH calculations in case comparison with other
code suites is desired.

At primary issue here is the description of spatial symmetry groups in terms of their generalized permuta-
tion representations. In the next subsection we define these, and in the following subsections we describe how
symmetry impacts modules in four different categories: integral generation, R(O)HF and UHF calculation,
integral transformation, and MCSCF and CI calculation. Further details for each of the specific modules
will be taken up separately when their input datasets are described; the present discussion will cover back-
ground only. In addition, the initial discussion will focus on discrete symmetry point groups. (The special
considerations required for the continuous groups, Co, and Doy, are best understood as modifications of
the framework of the discrete cases and so their discussion is somewhat delayed in the following.)

4.1 Generalized Permutation Representations

The concept of a generalized permutation representation is important for understanding the operation of
CRUNCH. This has been detailed in a discussion of the symmetry of n-electron functions[7] and, here, only
a brief outline is given.

A permutation matriz is a square matrix in which each column and row has one and only one nonzero
element and the value of that element is restricted to 1. It follows directly from the definition of a group
that each finite group possesses at least one representation made up entirely of permutation matrices.!

If now we generalize this idea slightly and allow the single nonzero element in each row and column to
be of unit magnitude, we can call this a generalized permutation matriz. As CRUNCH does not currently
support the use of complex numbers in this connection, the nonzero entries of the generalized permutation
matrices of present interest (the real generalized permutation matrices) are limited to £1. We give an
example in the next section.

4.2 Symmetry and Integral Generation
The integral packages differ in the way in which they employ spatial symmetry.

e lobeWat

The efficiency of the Gaussian integral module depends significantly upon the use of spatial symmetry.
Let us consider a normalized atomic orbital basis, x1, x2,...,Xn. If the molecule possesses elements of
symmetry, the basis should reflect these as:

Ry; = ZX]’ D(R);:,
J

where R is a symmetry operation, D(R)jz- are the elements of the representation matrix, and the basis
must be closed under the operations of the group. If the D(R) matrices are all of the real-generalized-
permutation type, then the full symmetry of the molecule may be utilized to speed the production of
the integrals. Whether this is possible, or whether a subgroup must be used instead, depends upon the
interplay of several factors: the nature of the system, the properties of its spatial group, the basis one
wishes to use, and, perhaps surprisingly, the fact that there are three spatial dimensions. It seems most
illuminating to give a simple example where the Cs, group supports one such basis and to describe further
circumstances where a subgroup must be used instead.

Consider a minimal basis calculation of the NH3 molecule with a geometry satisfying Cs, symmetry.
Further, use a reference frame in which the Cartesian coordinates of the nuclei are as shown in Table 2.
The basis is ordered as {N1s, N2s, N2p;, N2p,, N2p3, H;1s, Hyls, H3ls} with the three orthogonal

LA finite group possesses a square multiplication table, each row of which is merely a permutation of the row above. If these
permutations are converted into permutation matrices, they collectively constitute a permutation representation of the group.
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2p orbitals oriented trigonally and the subscript indicating to which hydrogen each is (only nominally)
directed. Therefore, the unit vector perpendicular to the nodal plane of N 2p; is in the yz-plane at an
angle of arccos(1/v/3) (~ 54.7°) from the z axis.? (Note that this angle is independent of the molecular
bond angles.) The other nitrogen 2p orbitals are arranged to have the same projection on the z-axis. The
projections on the xy-plane of the lines perpendicular to the nodal planes of these orbitals are at an angle
27/3 (120°) from the y-axis and are contained in the other two vertical symmetry planes (labeled o199
and o449 below).

Table 2: Atom positions for ammonia.

Atom X y zZ
N 0 0 0
H 0 a b
H —3a/2 -a/2 b
H V3a/2 —a/2 b

“a and b are not determined
by symmetry, but by bond
distances and angles

The permutation matrix resulting from subjecting this ordered orbital basis to the C3 operation is:

( _

OO OoOH OO OO
O = OO0 OO oo
—_ OO0 oo oo
OO = OO O OO

OO DO OO O -
OO OO OO =O
OO OO HOOO
OO OO O =OO

| _

and one can begin to see how a permutation representation generalized to include elements of -1 might
become necessary in other circumstances, such as in point groups with a center of symmetry or when
orbital nodal planes coincide with symmetry planes.

The results of subjecting the entire basis to all the operations of the point group are shown in Table 3
and the representation of Cs, supported by this basis is of the type we have been discussing.

Table 3: Transformation of a specially oriented basis on ammonia.
I Cs (O Oy, 0120 0240

N1s Nls Nls N1s N1s Nls

N 2s N2s N2s N 2s N 2s N2s

N2p; N2p, N2p3 N2p; N2p; N2py
N2p, N2ps; N2p; N2p; N2p, N2p
N2p3; N2p; N2py N2py, N2p; N2p;
H1 1s HQlS H3 1s H1 1s Hgls H2 1s
Hzls Hgls H1 1s Hgls Hzls H1 1s
Hgls Hlls H2 1s Hzls Hlls H3 1s

Of course, in the coordinate frame given in Table 2 the p-basis could have been directed along the
Cartesian axes and the molecule treated in Cy symmetry as is commonly done in some quantum chemistry
codes. In that case, degeneracies of orbitals and states would not be so precise.

The situation becomes more nuanced if the basis includes d-orbitals. The spherical set, dj,2_y2_yo,
dy2_y2, dyx, dsy, dxy, cannot be arranged trigonally to produce a generalized permutation representation,
but the Cartesian set, dy», dy2, d,2, dyy, dys, dy,, can be. Such arrangements are possible for basis sets
proportional to products of Cartesian coordinates (and the capabilities of the lobeWat module in this

regard will be discussed later.)

2As we shall see, arbitrary orientation of the orbitals is allowed by lobeWat.
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Further, it is worth noting those circumstances under which the real generalized permutation represen-
tation of CRUNCH is not sufficient to encompass a symmetry group. In particular, if there are atoms on
higher-order axes, some rotations may transform a basis orbital into a combination of more than one of the
basis orbitals. In this case, the largest subgroup supporting the required representation may be employed.
(Thus, atoms described by a Cartesian basis may be treated using Dg4.) On the other hand, benzene
provides a good example of the use of higher point groups for molecules lacking problematic atoms. In a
Dgn geometry, we could orient atom-centered Cartesian systems so that each has its z-axis perpendicular
to the plane of the molecule. Then each of the local x-axes could be oriented radially (e.g. outward) and
the y-axes could be directed tangentially with a common vorticity. These axes could then be decorated
with either spherical or Cartesian atomic orbitals in such a way as to support the required representation.

e atmintc

The Slater integral package has no symmetry group requirements that the user need be aware of. More
will be said about its interface to the Hartree-Fock modules in the next section.

4.3 Symmetry and the R(O)HF and UHF Modules

The degree of symmetry allowed by these modules depends upon the source of the integrals.

e lobeWat

Using the more-established methods for discrete point groups, the level of symmetry allowed in Hartree-
Fock calculation is the same as that in integral generation. However, a new feature arises. For a degenerate
irreducible representation (IR), the orientation of the components must be specified. (In this manual,
when these components need to be distinguished from the irreducible representations themselves, they are
referred to as symmetry species.) Although this choice, global to the final molecular orbital basis, can be
done manually, the mkscf program is provided as an aid. The lobeWat output contains a table of the
AOQ transformations for the generalized permutation representation. This table may be extracted with the

get-ao-tran utility and pasted into the input file for mkscf.

To take advantage of CRUNCH’s newer capability to use the continuous linear point groups, Cuooy
and Doy, the proper symmetry species for atoms or diatomics can be constructed, with some manual
intervention, using the mklpscf module.

e atmintc

The atomic Slater integral package provides integrals which can be used by the Hartree-Fock modules to
perform the calculation in full symmetry. atmintc has two operating modes, with and without an applied
electric field along the z-axis. In the absence of a field, full spherical symmetry can be employed.?> With
the field the system symmetry is Co.y. The output file from atmintc contains a template for the input
to the Hartree-Fock programs which automatically specifies the symmetry species of the orbitals in either
case.

This full-symmetry treatment of atoms is not maintained throughout CRUNCH. Post-Hartree-Fock
calculations must retreat at least to Do if the somewhat new features for the linear continuous groups
are tried or to Dy, if constrained to the more-established methods.

Regardless of the integral package used, when symmetry is specified, the Hartree-Fock modules can
determine the lowest-energy state of any requested symmetry species, even if it does not contain the system’s
ground state. In addition, gscfnn can, in some circumstances, be used to determine state-averaged solutions
among several symmetry species or even irreducible representations.

4.4 Symmetry and Orbital Transformation

The transformation of the one- and two-electron integrals corresponding to an orbital basis change generally
takes place in one, and sometimes a second, step.

3This is true with the caveat that the solutions obtained are actually the real linear combinations of the familiar complex
eigenfunctions of good angular momentum (in particular, the symmetric and antisymmetric combinations of functions with the
same |m|in O(3)). These multi-electron functions have the same inter-relationship as the real and complex spherical harmonics.
(The Hartree-Fock solutions for the linear continuous point groups are similarly real.)
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® trannn

This module transforms the integrals produced by lobeWat or atmintc in an atomic-orbital basis into
integrals in a Hartree-Fock basis (or in some other, user-specified basis). In this module no symmetry
information need be specified, none is used to speed the calculation, and none is explicitly recorded in the
transformed integrals.

4

There is a core-valence separation allowed and, when used, the core® is commonly composed of orbitals

belonging to definite symmetry species.
e ctran

This module is used only for systems with Dy, or Cy, symmetry. Its exclusive purpose is to transform
the integrals to reflect a conversion of the underlying basis from real functions into complex combinations
of these functions, especially those that are eigenfunctions of the L, operator. Although not necessarily
indicative of the actual algorithms employed or the data stored, the one-electron basis can thereafter be
regarded as complex.

4.5 Symmetry and the CI Modules

All of the CI methods in CRUNCH, the MRCI, the MCVB, and the MCSCF, depend upon the symgenn
module for configuration selection and the operation of this module is somewhat different for finite point
groups and for the continuous linear groups.

The implications of the restriction to a real generalized permutation representation of the orbitals are
especially apparent for nonlinear molecules. Although there are exceptions, one often performs CI calcula-
tions with orthogonal molecular orbitals that form a basis for a completely reduced representation of the
spatial group. Since the number of groups that possess such irreducible representations is small, relatively
few such groups can be used at this level. The finite groups for which this is possible have at most two- or
four-fold rotation axes. Thus, for example, a minimal basis full-w MRCI calculation of the benzene molecule
(in a Dgp, geometry) would be limited to the Doy, point group.

The exceptions are mainly MCVB calculations where localized atomic orbitals are used directly in config-
urations. Such a calculation of benzene can be performed in Dg, and provides a multi-electron counterpart
to the benzene example discussed above in connection with integral generation.

For atoms or linear molecules with complex orbitals, symgenn combines a real generalized permutation
representation of the orbitals over a subset of the group operations with a partial accounting of angular
momentum symmetry (see the symgenn section for details) to treat Doon or Cooy systems explicitly. Unlike
the full-symmetry linear or atomic Hartree-Fock solutions, the multi-electron wavefunctions which result can
be thought of as being complex (although this doesn’t characterize their computational representation). They
have a relationship to corresponding real functions analogous to the relationship between spherical harmonics
and their real counterparts. CRUNCH is not currently capable of performing atomic CI calculations with
full spherical symmetry.

We continue now with the bulk of the manual which is a discussion of each primary module and emphasizes
the details of constructing the user-supplied input files.

5 Primary Computational Modules

5.1 Integral Generation
5.1.1 1lobeWat
This module calculates the one- and two-electron integrals for atoms and molecules from Cartesian or spheri-

cal lobe-Gaussian[8] atomic orbitals (AOs). The input is only slightly different from what would be necessary
if standard Gaussians were used. Table 4 contains a list of the files read or written by this module.

4The somewhat unconventional use of this term is more fully explained in the trannn section.
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Table 4: Files read (above the single line) or written (below) by lobeWat

Suffix and Extension Text (t) or
or (Full File Name)  Description (opt.=optional) Binary (b)
lob.inp User-supplied input t
(User specified) Nuclear charges and positions (opt.) t
lob.out Output file t
enuc.dat Nuclear Energy b
aop.dat AO basis statistical info. t
lob.I1 One-electron integrals b
lob.I2 Two-electron integrals b
lob.I2n Two-electron integrals info. t

Deferring specification of its location and local orientation, a single, primitive Gaussian function can be

written as: . )
Guwa (1) = Ny ey, (7)

where N, ensures normalization and, modifying the isotropic polynomial and exponential terms, is the
orientation term, y, (7). For spherical Gaussians these are just the real spherical harmonics, Y, (6, ¢),
and L and P are the familiar quantum numbers 1 and m. For these spherical functions, CRUNCH supports
angular momentum up through L=2 (d orbitals). For Cartesian functions the y, . (#) are the unique products
(normalized to r*) of the Cartesian coordinates with combined exponents equal to L (a generally enlarged
set with respect to spherical functions of the same 1.).> For Cartesian functions the maximum value of L
supported here is three (f orbitals).

As is common in Gaussian quantum-chemical codes, primitive functions with the same L and P but
different o can be combined in a fixed linear combination as:

G () = 4 (F) 12 Y Crem 7™

to produce a single normalized function with tunable r-dependence to more closely approximate a Slater
function or otherwise produce an optimal shape. As an aid to optimizing or adapting existing bases, lobeWat
allows all the « in each combination to be multiplied by a single, fixed scale factor. These combined
functions are also termed group functions below and the coefficients are commonly referred to as contraction
coefficients. Strictly speaking, as used by lobeWat, both the primitive and the combined functions should
be distinguished from “atomic orbitals,” the main difference being that by being placed at several locations
with definite orientations, a single group function can be used to define multiple atomic orbitals.

It is worth emphasizing that, not only must the orientation of each atomic orbital be specified by the
user, but it may also be positioned arbitrarily, not just at the position of a nucleus. In the interests of
flexibility, these positions may be optionally read from a separate file. A single sphere of constant charge (a
Watson sphere[10]) may also be placed around the system.

Format of the <prefix>lob.inp File:

The input dataset may have comments throughout but the first two lines of the input are printed for reference.
It is good practice to use them for comments to identify the problem.

The input data are divided into the sections given below. Line numbers are internal to these sections.

e (General statistical information

Line 1: nuc norb ntyp ngrp I1flg 12flg

nuc number of nuclei and AO positions (int)

If nuc < 0 the nuclear positions are given in a separate file (see below).
norb number of atomic orbitals (int)
ntyp number of group functions (int)

5In general, this set of Cartesian functions of fixed L not only spans the complete set of spherical harmonics with L=I,
but may also include spherical harmonics of lower 1. Nevertheless, this manual accords with common usage[9] in, for example,
referring to the six Cartesian Gaussians with L=2 as “d-functions” even though they include an s-function.
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ngrp number of spatial symmetry group elements (int)

Iflg ‘1’ - calculate one-electron integrals
‘0" - do not calculate
I2flg ‘1’ - calculate two-electron integrals

‘0’ - do not calculate

e Geometric scale factor and Watson sphere
Line 1: gscal

gscal multiplicative scale factor for nuclear and AO positions and displacements
and the Watson sphere size and position (float)

Line 2: wq wrad wcx wey wez

wq charge on Watson sphere, in au (float)
wrad radius of Watson sphere (float)

WCX x position of center of Watson sphere (float)
wey y position of center of Watson sphere (float)
wez 7 position of center of Watson sphere (float)

e Nuclear and/or atomic orbital positions

There are two possibilities here. The charges and positions may be included in the input file or read from
an external file (if nuc < 0 above). In either case the following format for the charges and positions is used.
When reading from an external file there is an additional option useful for moving some of the centers in
one portion of a molecule (listed first among the positions) with respect to the remainder.

If nuc > 0:

nuc lines: 7z rx ry rz

77, nuclear charge (float, note: may be nonintegral)
Set to zero for the position of an AO not on a nucleus.
rx x-coordinate of position (float)
ry y-coordinate of position (float)
7 z-coordinate of position (float)

Or if nuc < O:
Line 1: fname
fname name of external file with nuclear and AO positions (string)
*** Beginning of the format of the fname file
First abs(nuc) lines of file fname: zz rx ry rz
(as above for nuc > 0)
Next line of file fname: nvec

nvec  number of the initial centers in the list to translate (int, 0 < nvec < nuc)
If nothing is translated, this must still be present and = 0.

Next nvec lines of file fname: tx ty tz

tx x-displacement of the entered position (float)
ty y-displacement of the entered position (float)
tz z-displacement of the entered position (float)

***% End of the format of the fname file

e Atomic orbitals — types and orientations

Each of the norb lines of this section specifies a single combined orbital (the combinations are given in
the next section). The number of items required on each line depends upon the type of the orbital (i.e.
its angular momentum, orientation, and whether it is Cartesian or spherical). For clarity the first five
required parameters common to all orbital types are described first, then the particular cases which define
the orientation of anisotropic orbitals and necessitate up to six additional parameters on the same line
are considered separately.

First norb lines: labl L Ityp otyp opos
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labl arbitrary alphanumeric AQO label (string, 1-10 char.)
L value of L in the second equation of this section (int = 0, 1, 2, or 3)
ltyp orbital type (int = 0, 1, 2, 3, 4, or 5)

For an s-orbital (L = 0):

Ityp =0
For a p-orbital (L = 1):
Ityp =0

For a d-orbital (L = 2):
Ityp = 0 spherical d,z2-orbital
Ityp = 1 one of the other four spherical d-orbitals
Ityp = 2 Cartesian dy, dyy, or d,, orbital
Ityp = 3 Cartesian dyy, dy,, or dy, orbital
For an f-orbital (L = 3):
Ityp = 3 Cartesian fyxy, fyyy, or f,,, orbital
Ityp = 4 Cartesian fexy, fuxz, fyyx, fyyz, f2ax, Or £,y orbital
Ityp = 5 Cartesian fyy, orbital
(Ityp = 0, 1, or 2 reserved for spherical orbitals, but not implemented;
only Cartesian f-orbitals are currently available.)

otyp number in the list of ntyp group functions (next section) for this AO (int)
opos location of AO as number in the list of abs(nuc) positions (int)

Polar angles possibly appended to each of the first norb lines (all float):

For s-orbitals (L = 0): (no additional parameters)
For p-orbitals (L = 1): thetal phil

thetal azimuthal angle of positive lobe

phil equatorial angle of positive lobe

For spherical d-orbitals (L = 2 and ltyp < 1):
If Ityp = 0, a d,2 orbital: thetal phil
thetal azimuthal angle of either positive lobe
phil equatorial angle of that positive lobe
If Ityp = 1, one of the other four spherical d orbitals: thetal phil theta2 phi2
thetal azimuthal angle of either positive lobe

phil equatorial angle of that positive lobe
theta2 azimuthal angle of either negative lobe
phi2 equatorial angle of that negative lobe

For Cartesian d-orbitals (L = 2 and ltyp > 2):
If Ityp = 2, a dp,, orbital (p = x, y, or z): thetal phil
thetal azimuthal angle of either positive lobe
phil equatorial angle of that positive lobe
If Ityp = 3, a dpq orbital (pq = xy, xz, or yz): thetal phil theta2 phi2
thetal azimuthal angle of the p direction

phil equatorial angle of the p direction
theta2 azimuthal angle of the q direction
phi2 equatorial angle of the q direction

For Cartesian f-orbitals (L = 3 and ltyp > 3):
If Ityp = 3, a dy,pp orbital: thetal phil
thetal azimuthal angle of the positive lobe
phil equatorial angle of that lobe
If Ityp = 4, a dppq orbital: thetal phil theta2 phi2
thetal azimuthal angle of the p direction

phil equatorial angle of the p direction
theta2 azimuthal angle of the q direction
phi2 equatorial angle of the ¢ direction

If Ityp = 5, a dyy, orbital: thetal phil theta2 phi2 theta3 phi3
thetal azimuthal angle of the x direction
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phil equatorial angle of the x direction
theta2 azimuthal angle of the y direction

phi2 equatorial angle of the y direction
theta3 azimuthal angle of the z direction
phi3 equatorial angle of the z direction

e Group/combination functions
ntyp groups of lines: Each group defines one of the group functions.

First line of group: typn scale

typn number of primitive Gaussians in combined function (int)
Set to one to use a primitive directly.
scale multiplicative scale factor for all alf (below) in group (float)

Next typn lines of group: alf coef

alf exponential scale factor of primitive in group function (float)
coef contraction coefficient of primitive in group function (float)

e Spatial symmetry group elements.
ngrp lines: gop+gopord goppwr theta phi
gop operation type (char)
‘C’ - proper rotation
‘S’ - improper rotary reflection
gopord order of the rotation axis (int)
(i.e. the value for which 27 /gopord is the rotation angle)
goppwr the exponent which produces the operation (int)
(e.g. 2in C3)
theta polar azimuthal angle of the axis of rotation (float)
phi polar equatorial angle of this axis (float)
The first two parameters are written together with no intervening spaces.
Note that, although formally only proper and improper rotations are supported, ‘S1 1’ gives a standard
reflection operation, ‘S2 1’ the inversion, and ‘C1 1’ the identity. Also, for example, in a group with a Cy4
axis, the composite C3 operation can be entered as such (‘C4 2’) or as Cy (‘C2 17)) with equal validity.

5.1.2 atmintc

This program calculates the one- and two-electron integrals for single atoms from real, Slater orbitals. Table
5 contains a list of the files read or written by this module.

The format and naming of the one- and two-electron integral files is the same as that used for the lobe
Gaussians which are, in some sense, the CRUNCH default; it is up to the user to keep track of the fact
that the integrals here are not produced by the lobeWat program. The AO dipole transition moments and
the spatial part of the one-electron spin-orbit coupling matrix elements are also calculated. Automatically
appended to the output file is a template for the input file for the following single-configuration SCF modules.
It is also possible to perform the calculation with a finite (i.e. noninfinitessimal or nonperturbative) electric
field applied along the z-axis.

This module employs Slater orbitals as defined by:
Snlmoz(’r; 07 ¢) = Nnoz Tn71 Yim(ea ¢) e "

where N, is the normalization constant and the normal restriction on quantum numbers, n > 1+1, is
enforced, but there is no limit imposed on the maximum value of n. The input data require only the
unique sets of n, 1, and «. The program expands this set into the full number, 21+1, accounting for the
different m-values. The real spherical harmonics, Y1, (8, ¢), have been verified to obey the phase and direction
conventions of reference [12].

Format of the <prefix>atm.inp File:
After any initial comment-only lines, the following data are given (opt. = optional):
Line 1: norbc Z
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Table 5: Files read (above) or written (below) by atmintc

Text (t) or

Suffix and Extension Description Binary (b)
atm.inp User-supplied input t
atm.out Output file t
enuc.dat Nuclear Energy b
aop.dat AO basis statistical info. t
lob.I1 One-electron integrals b
lob.I2 Two-electron integrals b
lob.I2n Two-electron integrals info. t
atmom.I1 Transition moment integrals b
lob.S0I1 Spin-orbit coupling matrix elements b

norbc number of sets of n, 1, and « values (int)

Z nuclear charge (float, note: may be nonintegral)

Line 2: print_flag
print_flag ‘0" gives minimal printout
‘1’ prints the nonzero one- and two-electron integrals to the output file

Line 3 (opt.): label value

label The string: ‘FF’
value electric field strength (in au) (float)
If this entire line is missing there is no applied field.

Next norbc lines: n 1 a

n principal quantum number of the orbitals (int)
1 azimuthal quantum number of the orbitals (int, 1<n)
« exponential scale factor of the orbitals (float)

5.2 Hartree-Fock Calculation
5.2.1 gscfnn

This program finds the spin-restricted, open- or closed-shell, self-consistent-field (SCF) solutions of the
Hartree-Fock Hamiltonian (abbreviated as R(O)HF). It does this for a fixed configuration of the nuclei using
the atomic orbital (AO) integrals generated by either lobeWat or atmintc. Table 6 contains a list of the
files accessed by this module.

For the most general spin case, the eigenvalues are given in terms of the one-electron energies and the
two-electron Coulomb and exchange matrix elements as:

E= szhzz + Z(aijJij - Bij Kij)
i ij

where the sums are over the molecular orbitals (MOs) determined by self consistency. The theory behind
the algorithm, in particular the meaning of the spin-coupling constants, W, «, and §, is given by Carbo
and Riera.[14] For many common circumstances these parameters are quite simple, but when they are
appropriately constructed, quite sophisticated calculations are possible. See the Appendix of this user’s
manual for further discussion of these parameters along with several examples, some simple and a few more
complex.

It should be noted that the number of electrons and the spin of the overall wave function are not specified
directly by the user but are derived from the spin-coupling parameters and the occupations of the orbitals.
The user is admonished to check that the number of electrons and the overall spin given in the output are
as intended, as there is no internal check of these values. Even calculations with parameters implying a
fractional number of electrons will quietly attempt to proceed to a meaningless result.

17
Distribution A: Approved for public release; distribution unlimited.



In addition, the user must explicitly symmetry adapt the AO basis for each symmetry species. (Revisit
section 4.3 for a discussion of a symmetry species.) Each basis orbital is specified as a linear combination
of some of the atomic orbitals enumerated at integral generation. In this module these symmetry-adapted
functions will further mix to compose the solution, but as given here they must span the space of the final
self-consistent, orbitals. Not only must the basis orbitals of different irreducible representations be mutually
orthogonal, but those of symmetry species which are components of a degenerate irreducible representation
must be as well. Performed manually, this can be rather tedious. The output of atmintc contains this
information and two support modules (mkscf and mklpscf) are also provided to ease creation of the input
file in other cases.

This module allows a few, relatively primitive means of speeding or ensuring convergence of the SCF
procedure. Note that a restart option is implemented so that optimization parameters can be changed with
successively improved orbitals. These procedures are sometimes inadequate and, if this module fails, the
mxsscf module can often be used to greater effect for systems of maximum total spin.

Upon convergence multipole moments (up through octapole) are automatically appended to the output
file via the dipole module.

Table 6: Files read (above) or written (below) by gscfnn

Text (t) or
Suffix and Extension Description (opt.=optional) Binary (b)
scf.inp User-supplied input t
aop.dat AO basis statistical info. t
enuc.dat Nuclear Energy b
lob.I1 One-electron integrals b
lob.I2 Two-electron integrals b
mos.orbs Molecular orbitals (opt., restart) b
scf.out Output file t
mos.nrgs MO basis statistical info. t
mos.orbs Molecular orbitals b

Format of the <prefix>scf.inp File:
The input data are divided into the following sections with line numbers internal to these sections.

e General statistical and convergence parameters

Line 1: norb nfop restart

norb number of AOs (int)

This must match the value from the integral generator.
nfop number of Fock operators required for spin-coupling (int)
restart, ‘0’ for new start

‘1’ restart from previous run (requires mos.orbs file)
Line 2: nsp -log(epsl) -log(eps2) -log(eps3) niter avilg shftflg prtflg dbgflg

nsp number of symmetry species among the orbitals (int)

-log(epsl) epsl is the criterion for an internal eigenvalue convergence test (int)
-log(epsl) = 13 is a common value

-log(eps2) eps2 is the threshold for a test of orbital symmetry (int)
-log(eps2) = 6 is often good

-log(eps3) if the energy change falls below eps3 SCF iterations are ended (int)
-log(eps3) = 6 is often adequate

niter maximum number of SCF iterations (int)

avilg ‘0’ for the default averaging procedure (see below)
‘1’ to input a custom averaging procedure

shftflg ‘0’ use zero shift parameter
‘1’ to input a nonzero shift parameter

prtflg ‘0’ for no extra output

‘1’ for extra printout
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dbgflg ‘0’ for no debugging information
‘1’ for extra debugging information

If avflg = 1, line 3: ff1 ff2 ff3 {f4 frac

ff1 ‘0’ no average
‘1’ average
ff2 (as ff1)
ft3 (as ff1)
ft4 (as f1)
frac averaging fraction (float, 0.0 < frac < 1.0)

When averaging, the sum of (frac) times the previous density and
(1.0-frac) times the present converged density is used as the
starting value for the density of the next iteration.

The default values (when avflag = 0) for the parameters on this line are: 0 1 1 0 0.5. This means that
starting with the second iteration, averages are alternately taken then not taken for consecutive pairs of
iterations. When averaging, the average of the previous density matrix and the new one is used for the
next cycle. If all of the parameters ff1-ff4 are zero, no averaging is performed.

If shftflg = 1, next line: shift

shift value added to virtual orbital energies to improve convergence (float, > 0)

Spin-coupling parameters

In this section vectors of length, nfop, are simply specified as a list of nfop values. In addition, symmetric
matrices of dimension nfop x nfop, such as (with nfop = 3):

Q11 Q21 Q31
Q21 (g2 (32
Q31 Q32 Q33

must also be specified. In the interests of efficiency, the symmetry-unique values are entered in a “lower
triangular” form by listing each row in turn, only up to and including its diagonal element. This compli-
cation can be safely ignored for the closed-shell singlet parameters given as examples here because nfop
is one in that case. Because the values in this section are used to calculate the number of electrons in the
system, repeating fractions should be given with a large number of digits (12 is recommended).

Line 1: W(1) W(2) ... W(nfop)

W(i) W parameter for Fock-operator i (float)

For a closed-shell singlet the sole value is W(1) = 2.0.

Next nfop lines: « matrix in lower triangular form

Line i of group: a(i, 1) a(i, 2) ... a(i, i)

a(i, j)  element j of row i of a (float)
For a closed-shell singlet the sole value is «(1,1) = 2.0.

Next nfop lines: 8 matrix in lower triangular form

Line i of group: £(i, 1) (i, 2) ... B(i, 1)

B(i, j) element j of row i of 8 (float)
For a closed-shell singlet the sole value is §(1,1) = 1.0.

Symmetry orbitals
nsp groups of lines: Each group gives the symmetry-adapted orbital for one symmetry species.
Line 1 of group: nfreq nocc(1) nocc(2) ... nocc(nfop) slabel

nfreq number of orbitals in this group (int)
noce(i)  number of group’s orbitals occupied for Fock operator i (int)
slabel symmetry species label (only used to clarify output) (string, 1-8 char.)
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If nsp = 1 no symmetry is used, nfreq = norb, and no other input is required after this line. (The
basis functions are constructed automatically.)
The sum of the nfreq for all the groups must equal the total number of orbitals, norb.

Next nfreq lines of group: nnzero i(1) C(1) i(2) C(2) ... i(nnzero C(nnzero)

nnzero number of nonzero coefficients in the orbital combination (int)
i(j) index of the AO in nonzero term j (int)
C(j) relative coefficient of the AO (float)

Note that only the nonzero relative values are specified and that they are automatically normalized
after being read.

5.2.2 mxsscf

This module is an alternative R(O)HF module for systems in which the total spin is the largest allowed by
the number of singly occupied orbitals (and thus can be used for closed-shell singlets). It is designed to allow
more direct control over the convergence of difficult cases through use of separate energy-shift parameters for
the alpha and beta orbitals. It is based on the algorithms of Guest and Saunders[15] but our implementation
is relatively new. As it requires more user intervention it is often reserved as a second choice, only for systems
for which gscfnn proves unsuitable. Table 7 contains a list of the files accessed by this module.

We have found that optimal convergence can often be obtained by restarting several times from the
previous best molecular orbitals but with successively reduced shift parameters; thus an additional feature
is provided. If, while the module is running, a file, stopmxsscf is created in the working directory (by
e.g. the command: touch stopmxsscf), the program stops smoothly with the current iteration, saving
the orbitals to the <prefix>mos.orbs file. The stopmxsscft file is then automatically removed before the
program terminates. There is no restart flag in the input data; a restart is effected by the presence of a
<prefix>mos.orbs file in the working directory when the job starts.

Since the input file has a format somewhat different from that of gscfnn, it is given a unique suffix
(scfx). However, the <prefix>mos.orbs file produced is consistent with files produced by gscfnn and so
can be used by downstream modules in a common manner. Currently, if multipole moments are desired,
gscfnn must be restarted with the orbitals determined by mxsscf.

Table 7: Files read (above) or written (below) by mxsscf

Suffix and Extension Text (t) or
or (Full File Name)  Description (opt.=optional) Binary (b)
scfx.inp User-supplied input t
enuc.dat Nuclear Energy b
lob.I1 One-electron integrals b
lob.I2 Two-electron integrals b
mos.orbs Molecular orbitals (opt., restart) b
(stopmxssct) Signal to terminate gracefully -
scfx.out Output file t
mos.nrgs MO basis statistical info. t
mos.orbs Molecular orbitals b

Format of the <prefix>scfx.inp File:

The input is arranged in sections similar to those of gscfnn. The first section has many of the same
types of information, but with a different format. Since mxsscf is based on the number of singly and doubly
occupied orbitals rather than separate Fock operators, it lacks a spin-coupling section and has a different
occupation specification in the last section. The user is reminded of the helper modules already mentioned
in the gscfnn section which simplify symmetry adapting the basis.

e General statistical and convergence parameters

Line 1: norb

norb number of AOs (int)
This must match the value from the integral generator.
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Line 2: nsp
nsp number of symmetry species among the orbitals (int)
Line 3: niter
niter maximum number of SCF iterations (int)
Line 4: neup
neup maximum number of iterations allowed to produce energy rises (int)
Line 5: nbkup
nbkup  number of iterations between backup of the mos.orbs file (int)
‘0’ for no intermediate backups
Line 6: alpha beta
alpha initial energy shift for the alpha orbitals (float, > 0)
beta initial energy shift for the beta orbitals (float, > 0)
Line 7: eps
eps maximum energy change for SCF convergence (float)
Line 8: abfac
abfac reduction factor for a and § if convergence occurs (float)

e Symmetry orbitals
nsp groups of lines: Each group gives the symmetry-adapted orbital for one symmetry species.
Line 1 of group: nfreq ndoub nsing

nfreq  number of orbitals in this group (int)
ndoub  number of group’s orbitals doubly occupied (int)
nsing  number of group’s orbitals only singly occupied (int)

Next nfreq lines of group: (same format as in gscfnn)

5.2.3 uhfnn

This module finds the spin-unrestricted, self-consistent-field solutions of the Hartree-Fock Hamiltonian using
the integrals generated by either lobeWat or atmintc. (Users unfamiliar with this, perhaps, less common
unrestricted-Hartree-Fock (UHF) approach to open-shell states and how it relates to the R(O)HF are referred
to textbook treatments such as [16], sect. 3.8.) This module can also, optionally, perform a second-order
Mpgller-Plesset (MP2) approximation to the correlation energy (see [16], chapt. 6). Table 8 contains a list of
the files accessed by this module.

The input file for this program looks superficially like that of gscfnn, but there are significant differences
and so it is given a different suffix (uhf). The format of the output orbitals is not compatible with downstream
CRUNCH modules, and so, for example, it is not possible to use these orbitals in CI calculations. In fact,
the concept of a conventional CI on top of a UHF calculation appears to be ambiguous.

Format of the <prefix>uhf.inp File:

The first input section has many of the same types of information as the corresponding gscfnn section,
but with a different format. There is no spin-coupling section as that is foreign to the UHF method. The
occupation part of the last section is somewhat different, but the necessity of symmetry adapting the basis
remains. (The user is reminded of the helper modules already mentioned in connection with gscfnn.) The
input concludes with an optional call for MP2 analysis.

e General statistical and convergence parameters

Line 1: norb restart

norb number of AOs (int)
This must match the value from the integral generator.
restart ‘0’ for new start

‘1’ restart from previous run (requires amos.orbs and bmos.orbs files)

Remaining lines of section: (same as the corresponding lines for gscfnn)
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Table 8: Files read (above) or written (below) by uhfnn

Text (t) or
Suffix and Extension Description (opt.=optional) Binary (b)
uhf.inp User-supplied input t
aop.dat AO basis statistical info. t
enuc.dat Nuclear Energy b
lob.I1 One-electron integrals b
lob.I2 Two-electron integrals b
amos .orbs Alpha MOs (opt., restart) b
bmos . orbs Beta MOs (opt., restart) b
uhf.out Output file t
amos.orbs Alpha molecular orbitals b
bmos . orbs Beta molecular orbitals b

e Symmetry orbitals
nsp groups of lines: Each group gives the symmetry-adapted orbital for one symmetry species.

Line 1 of group: nfreq nalpha nbeta

nfreq  number of orbitals in this group (int)
nalpha number of group’s orbitals with alpha electrons (int)
nbeta  number of group’s orbitals with beta electrons (int)

Next nfreq lines of group: (same format as in gscfnn)

e Request for MP2 calculation (optional)
Line 1: mp2lab

mp2lab ‘mp2’ - perform MP2 calculation

5.3 Orbital Transformation

5.3.1 matmld

This module is an optional preparatory step for the integral transformation performed by trannn. There,
one- and two-electron integrals are transformed from the atomic orbital (AO) basis to another orbital basis.
If the desired target orbitals are simply the molecular orbitals (MOs) calculated by gscfnn or mxsscf for a
single system, matmld is not really necessary.

Its primary use is for calculations in which the target orbitals are localized on fragments of the system
(either atomic or polyatomic) and are, themselves, the solutions of separate R(O)HF calculations. In this
context matmld constructs the matrix defining the transformation between the two bases (or equivalently
the target “molecular orbitals”) by fusing or melding the orbitals of several calculations. It can also form
hybridized orbitals as linear combinations of the target orbitals by subsequent transformation. These are
particularly useful for certain types of MCVB calculations. Optionally, the target basis can be orthogonalized.
Table 9 contains the names of the files accessed by this module.

Table 9: Files read (above) or written (below) by matmld

Text (t) or
Suffix and Extension Description (opt.=optional) Binary (b)
mld.inp User-supplied input t
mos . orbs Fragment orbitals (opt.) b
lob.I1 One-electron AO integrals (opt.) b
mld.out Output file t
mld.orbs Melded, target molecular orbitals b
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When fragments make up a composite, several file-name prefixes must be distinguished. The composite
prefix (which is associated with the underlying AO basis, the input and output files, and the final transfor-
mation matrix) is given on the command line when invoking the module. The fragment prefixes are given in
the input file. When successive fragments are identical, transformation blocks can be reused and replicated
instead of having to be reread. Thus the number of fragment files read may be less than the total number
of fragments.

The atomic-orbital basis of the composite system must be the same as the combined set of fragment
AO bases. The target molecular orbitals are given by the columns of the transformation matrix, while the
atomic orbital basis functions are associated with its rows. (The same column-row identification applies to
the fragment MO matrices of smaller dimension, as well.) The final transformation matrix must be square,
that is, the sum of the number of target orbitals selected from each fragment must equal the total number
of combined atomic orbitals. (The trannn module provides a subsequent opportunity for freezing (i.e.
enforcing double-occupancy of) some orbitals or eliminating them completely.) The module automatically
places zero coefficients between orbitals of different fragments, as appropriate. The user is warned against
accidently constructing bad target orbitals. There are a few checks for some common mistakes, but no
explicit detection of singular or otherwise ill-formed bases. In these circumstances downstream modules will
likely fail dramatically and may not give a useful error message.

If hybrid orbitals are formed, they are automatically normalized but are not orthogonalized, unless
requested. Optional Schmidt orthogonalization, accounting for AO overlap, is performed at the end and
proceeds sequentially through the target molecular orbitals from first to last.

Format of the <prefix>mld.inp File:
The input data are divided into the following sections with line numbers internal to these sections.
e Fragment file information
Line 1: ninp
ninp number of fragment orbital files to be read (int)
Next ninp lines: flname

finame prefix of the mos.orbs file (string)

e Statistical data and flags
Line 1: ndout num iorth hybf iprt

ndout dimension of transformation matrix (int)
num total number of fragments (int)
iorth ‘0’ for no orthogonalization
‘1’ for Schmidt orthogonalization
hybf ‘0’ for no further transformation
‘1’ for hybridization by further transformation
iprt ‘0’ for minimal printing

‘1’ for extra output

e Source and destination of transformation coefficients
num groups of lines: Each group describes one fragment.

Line 1 of group: ndin ncols new

ndin dimension of the fragment MO matrix (int)
ncols number of columns of this matrix to be used (int)
new ‘0’ to reuse the previous fragment matrix

‘1’ to read a new matrix from the next fragment MO file
Line 2 of group: irp(1) irp(2) ... irp(ndin)

irp(i) output-matrix row corresponding to row i of the fragment matrix (int)
This is the AO-to-AO mapping.

Line 3 of group: icp1(1) icp1(2) ... icpl(ncols)
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icpl(i)  column of the fragment matrix to place in the output matrix (int)
This is the source MO in the fragment.

Line 4 of group: icp2(1) icp2(2) ... icp2(ncols)

icp2(i)  destination column in the output matrix for fragment column icp1(i) (int)
This is the destination MO in the composite.

e Further orbital hybridization (optional, for hybf=1)
If hybf = 0 this section is absent.

The MO matrix obtained so far will be multiplied by the transformation matrix entered here. This matrix
is just the identity except for the columns specified here and these columns are zero except for the terms
explicitly given.

Line 1: nlc

nlc number of hybrids to form (int)

Next nlc lines: ncol nnzr row(1) a(1,ncols) row(2) a(2,ncols) ... row(nnzr) a(nnzr,ncols)
ncol column number of the composite MO which will be the hybrid (int)
nnzr number of nonzero coefficients in the transformation-matrix column (int)
row(i) row of nonzero coefficient i of the transformation matrix (int)

a(i,ncol)  relative nonzero coefficient i of the transformation matrix (float)

5.3.2 trannn

This module begins with the one- and two-electron integrals produced in an atomic-orbital (AO) basis by
lobeWat or atmintc and transforms them to an arbitrary basis of orbitals. (For a brief discussion in the
context of a simple example, see Ref. [16], p. 164.) Table 10 contains the names of the files accessed by this
module.

Table 10: Files read (above) or written (below) by trannn

Text (t) or
Suffix and Extension Description (opt.=optional) Binary (b)
trn.inp User-supplied input t
prm.inp Orbital permutation (opt.) t
mld.orbs/mos.orbs  Molecular orbitals (opt.) b
enuc.dat Nuclear energy b
lob.I1 Original one-electron integrals b
lob.I2 Original two-electron integrals b
lob.I2n Original two-electron integrals info. t
trn.out Output file t
trn.dns Transformed density matrix b
trn.orbs Transformed molecular orbitals b
core.nrg Nuclear energy (after transformation) b
trn.I1 Transformed one-electron integrals b
trn.I2 Transformed two-electron integrals b
trn.I2n Transformed two-electron integrals info. t

For brevity, and in accord with the way trannn is commonly employed, this basis is referred to in this
section as the molecular-orbital (MO) basis, but it should be emphasized that it is not required to correspond
to Hartree-Fock solutions of the system or any portion of it. The transformation can be defined by a matrix
of coefficients of the new MOs in terms of the original atomic orbitals. For clarity, in the input specification
below, the MOs will be associated with the columns of this and related matrices and the AOs with the rows.
The new basis functions can be selected from the columns of the MO matrix contained in the binary orbital
files produced by gscfnn, mxsscf, or matmld and/or specified explicitly. It is the user’s responsibility to
insure that the new basis is not singular or otherwise malformed. No explicit checks are performed by this
or following modules, but catastrophic and often puzzling results are likely to occur.
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Unless all of the MOs are specified explicitly in the input file, trannn seeks first a binary molecular orbital
file produced by matmld. If it finds none, it then looks for one from the Hartree-Fock modules, gscfnn or
mxsscf. The user is cautioned to carefully clean working directories of old intermediate files to avoid any
confusion.

This module can also produce what are referred to as core orbitals. These are fixed and always doubly
occupied hereafter. They are effectively removed from the active orbital space (with their energies automat-
ically incorporated into the transformed nuclear-repulsion energy). The user may specify these arbitrarily,
with no necessary correspondence to conventional, filled electronic shells.

For later use by the symgenn module, there is also provision for global orbital permutation. This is
specified in an additional input file, <prefix>prm.inp. If the file is absent, there is no permutation. If
permutation is to be performed, this file must be present and unchanged when both trannn and symgenn
are executed. The file contains space-separated integers: i(1) i(2) ... i(norb) where i(j) is the number of the
orbital to be moved to position j in the new ordering. Core orbitals are not included in the numbering .
(That is, the first orbital outside the core is in position 1 and there should be norbo—ncore numbers in the
<prefix>prm.inp file ranging from 1 to norbo—ncore.)

Format of the <prefix>trn.inp File:
The input is organized into groups with line numbers internal to the groups.
e General statistical parameters

Line 1: norbi norbo ncore nstr iin nbold iprnt

norbi number of AOs in the basis of the input integrals (int)

norbo number of MOs output, including core orbitals (int, < norbi)

ncore number of the norbo MOs to be placed in the core (int, < norbo)
The core orbitals appear first in the sections below.

nstr this is a parameter no longer used, set it to ‘0’

iin ‘0’ if all of the MOs are given explicitly in the input
‘17 if at least some MOs come from a binary orbital file

nbold this is a parameter no longer used, set it to ‘0’

iprnt ‘0’ for normal printout

‘1’ for extra printout

Note that for the input to downstream modules, the orbital basis after trannn contains norbo—ncore
orbitals.

e Selection of orbitals from previous calculation (optional for iin=1)
If iin=0 this section is absent.
Line 1: nmocc
nmocc  number of columns to be taken from the binary orbital file (int)
Line 2: ¢(1) ¢(2) ... ¢(nmocc)

c(i) column of the orbital-matrix to use as output MO number i (int)

e User-specified orbitals (optional for norbo > nmocc)
If nmocc = norbo all the orbitals have been specified and this section is absent.
norbo — nmocc lines: Each line defines an MO.

There are two alternative forms for specifying the MQOs: either all the coefficients can be given or just
the positions and values of the nonzero elements. Each MO can be given in either format which is
automatically detected.

Form 1: norbi a(1) a(2) ... a(norbi)

norbi number of orbitals in the AO basis (int, same as above)
a(i) coefficient of AO i in the MO (float)
Form 2: nnz r(1) a(1) r(2) a(2) ... r(unz) a(nnz)
nnz number of AOs with nonzero contributions to the MO (int)
r(i) position in the AO list of nonzero contribution i (int)
a(i) coefficient of AOQ number r(i) in the MO (float)
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5.3.3 ctran

This special-purpose module begins with the integrals produced by atmintc, lobeWat, or trannn and per-
forms the transformation necessary to use the Dy, or Cooy point groups in CI calculations of linear molecules
or atoms. Table 11 contains the names of the files accessed by this module.

Table 11: Files read (above) or written (below) by ctran

Text (t) or
Suffix and Extension  Description Binary (b)
ctrn.inp User-supplied input t
core.nrg/enuc.dat Nuclear energy b
trn.I1/lob.I1 One-electron integrals b
trn.I2/lob.I2 Two-electron integrals b
trn.I2n/lob.I2n Two-electron integrals info. t
ctrn.out Output file t
ctrn.I1 Transformed one-electron integrals b
ctrn.I2 Transformed two-electron integrals b
ctrn.I2n Transformed two-electron integrals info. t

The transformation begins from pairs of real orbitals of the form:

u(z= Ps (;5) = R(Z7p) T(¢)

where:

T(¢) = cos(me) and sin(me)

and z is the coordinate along the angular-momentum quantization axis, p is the radial coordinate, and ¢ is
the angle around the axis. A nonnegative integer, m must be the same for both starting components. These
orbitals belong to the real symmetry species (refer back to section 4.3) of the irreducible representations of
the continuous linear groups. This module converts the one- and two-electron integrals in the original basis
of pairs of these functions into those which would arise from the corresponding, normalized complex orbitals:

1 -
u’(27p7 QS) = ﬁ Sm]’ R(le) ezmj¢7

which are now eigenfunctions of the angular momentum projection operator I:Z with corresponding quantum
numbers mj = m and m), = —m. An overall sign change Smj{ may also be introduced. As implemented here,
the basic formula is:

R(z, p){Sccos(me) +i S5 sin(me)} = R(z, p) St eimi¢

where S. and S5 are +£1 and, along with mjf, are specified in the input, while S,/ is a consequence of the

J
transformation. Care must be taken in its use, as the module lacks any internal check to confirm the user’s
assertion that the two real functions to be combined share the same R(z, p) and m.

This module cannot be used to prune the number of orbitals or perform more general basis transforma-
tions; these tasks must be accomplished by previous application of trannn.

The program first seeks integral files produced by trannn. If these are absent, it then tries to find those
from atmintc or lobeWat. Careful directory cleaning is again recommended.

Once integrals over complex functions have been formed, the downstream configuration-selection and
CI-matrix-construction modules symgenn, omtrcIII, and nomtrcII must be invoked with special flags to
indicate the complex basis and linear point group. Note that only some of the file-name suffixes and extensions
in this and later modules are unique for the complex basis. Unpredictable results (likely without meaningful
errors) will occur if the real/complex bases and discrete/linear versions of the modules are mixed erroneously.
Careful cleaning is again recommended and complete calculations in real and complex bases should probably
be performed in separate directories or, at least, use different prefixes. MP2 and MCSCF calculations in a
complex basis are not currently supported.

Format of the <prefix>ctrn.inp File:

Line 1: norb
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norb number of orbitals (excluding the trannn core) (int)

Next norb lines: mp cost sint(optional)

mp the L, quantum number, m’, for the complex orbital (int)
cost the cosine term in the complex orbital (int)

Two data are encoded: sign(cost) gives S. and

abs(cost) is the orbital number with cosine symmetry.
sint the sine term in the complex orbital (int)

Same format as cost, but missing if mp=0.

5.4 Configuration Selection and Symmetry Projection

5.4.1 symgenn

This module is the heart of the multi-configurational methods in CRUNCH. Its basic function is to select
configurations of a particular spin and symmetry-adapt them to the point group irreducible representation
(IR) specified by the user. Flexible selection criteria can be applied which are capable of producing large
numbers of configurations with a single set of rules or of narrowly targeting multi-electron basis functions,
even to the level of individual configurations. Table 12 contains the names of the files accessed by this
module.

Table 12: Files read (above) or written (below) by symgenn

Text (t) or
Suffix and Extension Description (opt.=optional) Binary (b)
sym.inp User-supplied input t
prm.inp Orbital permutation (opt.) t
sym.out Output file t
sym.lul CI configurations
sym.1u8 CI statistical info. t

The selection criteria can be divided into two broad classes based on their scope. The spin and spatial
symmetry are specified globally and apply to all the functions produced by the module. (Thus, calculating
another spin state or symmetry requires separate application of the module.) Currently the maximum spin
supported is S=3 (septets). The other criteria are given in any number of rule sets which are applied
successively, each producing a sublist of allowed configurations. All rules in a set must be satisfied in order
for a configuration to be added to the sublist. These variable rule sets require further discussion.

A charge center is a subset of the orbitals (possibly including core orbitals) and the nuclei. Each orbital
and nucleus is assigned to one and only one charge center globally. The occupancy of the active orbitals can,
however, be variously limited by specifying possibly different minimum and maximum total charges for the
charge centers in each section of rules.

Configurations can also be constrained by defining an initial number of the orbitals as base orbitals and
setting the number of electrons that will be excited out of this set. The total number of doubly occupied
orbitals can also be limited by imposing maximum and minimum values. User-specified groups of orbitals
required to hold a definite number of electrons can be defined and the occupancy of individual orbitals can
even be arbitrarily freed or limited.

The user is reminded of the requirement that the orbitals composing the configurations provide a basis
for a real generalized permutation representation (see Section 4.1). This means that under all the operations
of the point group, an orbital, whether real or complex, must be transformed into one of the other orbitals,
or into the negative of an orbital. (This may limit the point group of the calculation to a subgroup of the
nuclear-framework point group.)

This requirement allows all the information contained in the representation matrices, D(R), to be conve-
niently expressed in the form of an orbital transformation table (c.f. Table 3 of section 4.2). If the symmetry
elements, beginning with the identity, are assigned to the columns of the table, and the orbitals to the rows,
then the effect of each operator on each orbital can be simply expressed as an entry which is the index of
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the produced orbital, with a prepended minus sign if it is inverted. These are the parameters: te t(2) t(3)
... t(nspop) below.

It may seem odd to the user that, aside from the initial position reserved for the identity, the ordering
of symmetry elements in the input is arbitrary. In fact the module makes no use of the actual nature of
the operation, but only of the existence of an operator with the indicated effect. It may help the user avoid
confusion, however, to hew to the order of elements in some standard reference. Constructing the orbital
transformation table is one of the most tedious and error-prone steps of forming the input file. The synp
helper module is especially commended to the user.

See the trannn section for the format of an optional <prefix>prm.inp file which has the effect of
reordering the orbitals given in the input files. It is desirable to have a means of doing this rapidly (and
repeatedly), without having to manually change the <prefix>trn.inp and <prefix>sym.inp files, as the
actual multi-configurational basis produced by symgenn can depend upon the order in which the orbitals are
listed (see [3] and [17] for more details).

The extreme flexibility of this module is accompanied with some complexity and potential for error. As
the succeeding configuration-interaction steps can involve considerable computational expense, this module
is designed to be separate and fast, so that debugging can be performed before proceeding. (Note that it
does not even read files produced by modules usually run before it.) The user should employ extra care
here and consider performing preliminary CI calculations with a limited, representative set of configurations
(perhaps by limiting the degree of excitation) before committing to the ultimate calculation of interest. As
a further aid the module symgerr is automatically called at the end and checks the configuration list for
certain classes of errors.

Finally, a brief word about the output. We have been a bit cavalier with the term “configuration” hereto-
fore. The output is given in terms of tableaux, symmetry functions, and constellations. Without repeating
the more complete discussion of reference [3] (see especially chapter 6), the (Young’s) tableaux are the anti-
symmetrized association of electrons with spin-orbitals. The symmetry functions are the symmetry-adapted
combinations of tableaux which form the multi-electron basis functions of the configuration-interaction prob-
lem. In the variety of spin-free quantum chemistry used here they can be regarded as the “high-spin” mg = S
basis functions. Finally, constellations are sets of tableaux interrelated by the spatial symmetry operators.

In light of the module’s complexity, the discussion immediately following is limited to discrete symmetry
point groups. Rather than burden a unified treatment with multiple excursions and exceptions, the changes
to the input required for the continuous groups C.., and D are segregated to a separate section at the
end.

Format of the <prefix>sym.inp File for Discrete Point Groups:

For discrete point groups invoke the code with the command crunch -s.

The input data are divided into the following sections with line numbers internal to these sections.
e Title

Line 1: title

title description of the problem (string, 1-80 char.)
This must be the first noncomment line and may contain spaces.

e General statistical parameters

Line 1:
nele number of electrons outside the trannn core (int)
mult the spin multiplicity, 25+1 (int, < 7)
norb number of orbitals outside the trannn core (int)
nspop number of operations in the spatial group (int)
nchgent  number of charge centers (int)
intgr this is a parameter no longer used, set it to ‘0’
style ‘0’ for tableau output with alphanumeric orbital labels

‘1’ for more compact output for larger problems

e Orbital labels and symmetry
norb lines: orbv te t(2) t(3) ... t(nspop)
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orbv orbital label (for tableau printout) (string, 1-7 char.)

te position of orbital in list (int)
(also, of course, the orbital produced by the identity operator)
t(j) number of the orbital produced by symmetry operator j (int)

This is negative if the product orbital is inverted.

e Symmetry of the multi-electron configurations
Line 1: fd(1) £d(2) ... fd(nspop)
fd(j) character of the symmetry species under symmetry operator j (float)
The order of the operators must be the same as in the previous section.

Refer back to section 4.3 for the definition of a symmetry species.
When the irreducible representation (IR) is degenerate, the character of the entire IR can be given (fd(1)
is then equal to the IR degeneracy) in which case functions of all the degenerate symmetry species will
be spanned by the configurations. Alternatively, functions of only one of the degenerate components can
be requested (in this case, fd(1) will be 1.0).
e Charge center definition
Line 1: chg(1) chg(2) ... chg(nchgent)
chg(i) charge of charge center i before active-orbital occupation (int)
(Each doubly occupied core orbital of the center reduces
the nuclear charges by two).
Line 2: cnt(1) cnt(2) ... cnt(norb)
cnt (i) charge center that active orbital i belongs to (int)

e Variable Configuration Rule Sets
Any number of six-line groups give rules which constrain the orbital occupations of each associated sublist.

Line 1 of group: nbase nexc pmin pmax label

nbase number of initial orbitals from which excitations may be made (int)
If ‘0’ the module is terminated and no more data is read.

nexc number of electrons excited out of the base orbitals (int)

pmin minimum number of doubly occupied orbitals (int)

pmax maximum number of doubly occupied orbitals (int)

label label to identify rule set and sublist (string, 1-80 char.)

As this is white-space-terminated, ‘_’ can be used to connect words.

Line 2 of group: qmin(1) qmin(2) ... qmin(nchgent)
qmin(i) minimum combined charge on charge-center i (int)
(i.e. the minimum allowed for chg(i) minus the number
of active electrons occupying the charge center)
Line 3 of group: qmax(1) qmax(2) ... gmax(nchgcnt)

qmax(i)  maximum combined charge on charge-center i (int)

Line 4 of group: set(1) set(2) ... set(norb)
set(i) the orbital set that orbital i belongs to (int)
The module automatically counts the number of sets assigned;
do not skip any numbers in enumerating the sets.
(If all are equal to ‘1, there is just one set.)
Line 5 of group: mset(1) mset(2) ... mset(nset)
mset (i) the number of electrons occupying orbitals in set i (int)
nset is the largest of the set(i).
The sum of all the mset must equal nele.
Line 6 of group: occflg(1) occlg(2) ... occtlg(norb)
occflg(i)  the occupation restriction for orbital i (int, 1 < occflg(i) < 7)
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These occupation restriction indexes are essentially a binary encoding of the possible orbital occupancies.
Allowed double occupation contributes 4 (22 = 100(binary)) to the index, single occupation 2 (2! =
010(binary)), and no occupation 1 (2° = 001(binary)). Multiple possibilities are indicated by summing
the contributions. Thus, ‘3’ (011(binary)) would indicate that no or a single electron (but not two
electrons) could occupy the orbital. Definite double occupancy would be indicated by ‘4’ while no
occupation would be indicated by ‘1.” If the orbital occupation is not restricted, use ‘7’ (111(binary))

Changes to the Format of <prefix>sym.inp for C., and D, Point Groups:

To use these point groups the code must be invoked with: crunch -S. (Mistakenly using the parameter for
the discrete groups will produce unpredictable errors.)

This module does not employ a direct or complete treatment of the continuous point groups but brings
them into effect by combining specification of the angular-momentum-projection quantum number (usually
denoted m;) with a subset of the symmetry operations sufficient to distinguish the irreducible representa-
tion. This allows use of the symgenn algorithms with only modest modification. Note that, as Dy is a
proper subgroup of O(3), this module can be used to resolve much, but not all, of the symmetry in atomic
calculations.

Only the following sections need to have their formats altered from what has just been described. (In
particular, the variable rule sets are unchanged.) Note that unlike the discrete case, a definite order is
required for the symmetry operations.

e General statistical parameters

For C., nspop is 2 and for Dy, it is 4.
e Orbital labels and symmetry
If nspop = 2 (Cooy):

norb lines: orbv ml te t(oy,)

orbv orbital label (for tableau printout) (string, 1-7 char.)
ml angular-momentum-projection quantum number of orbital (int)
te position of orbital in list (int)

(also, of course, the orbital produced by the identity operator)
t(0xz) number of the orbital produced by the xz reflection (int)

This is negative if the product orbital is inverted.
Or if nspop = 4 (Doon):
norb lines: orbv ml te t(ox,) t(i) t(Cay)

orbv orbital label (for tableau printout) (string, 1-7 characters)
ml angular-momentum-projection quantum number of orbital (int)
te position of orbital in list (int)

(also, of course, the orbital produced by the identity operator)
t(0xz) number of the orbital produced by the xz reflection (int)

This is negative if the product orbital is inverted.
t(1) number of the orbital produced by the inversion operator (int)

This is negative if the product orbital is inverted.
t(Cay) number of the orbital produced by C, rotation about the y-axis (int)
This is negative if the product orbital is inverted.

e Symmetry of the multi-electron configurations
Line 1: MI fd(1) fd(2) ... fd(nspop)
Ml angular-momentum-projection quantum number for configurations (int)

fd(j) character of the symmetry species under symmetry operator j (float)
The order of the operators is as given in the previous section.

The magnitude of the characters is a bit different in this case. Functions of only one member of a degenerate
IR may be produced. Although the characters of the entire IR are given (fd(1) is then ‘2°), the sign of the
quantum number determines which of the two components is obtained.

30
Distribution A: Approved for public release; distribution unlimited.



5.5 Configuration-Interaction with Orthogonal Orbitals

5.5.1 mp2

This module calculates the second-order, Mgller-Plesset (MP2) contribution to the correlation energy for
restricted, closed- and open-shell systems (for an overview, see [16], chap. 6). It follows transformation (by

trannn) of the integrals over atomic orbitals to the real R(O)HF orbitals calculated by either gscfnn or
mxsscf. Table 13 contains the names of the files accessed by this module.

Table 13: Files read (above) or written (below) by mp2

Text (t) or
Suffix and Extension Description (opt.=optional) Binary (b)
mp2. inp User-supplied input t
core.nrg Nuclear Energy b
trn.I1 One-electron integrals b
trn.I2 Two-electron integrals b
trn.orbs Molecular orbitals (start or restart) b
mp2.out Output file t

This module is in the class of configuration state function approaches to Mgller-Plesset perturbation
theory. As exemplified by Murray and Davidson[18] these use pure spin states for the excited configuration
functions. We implement these as tableau functions. Murray and Davidson outline two variants, labeled
OPT1 and OPT2, which differ in the definition of the unperturbed Hamiltonian; both are supported here.

The MP2 procedure for closed-shell systems is unambiguous. For open-shell systems complications arise
from differences in orbital canonicalization at the Hartree-Fock step (see [19] for a short review). Guest and
Saunders[15] describe one popular choice which we have used in mxsscf. The gscfnn module is much more
flexible, but the simplest W, a, or § parameters give Roothaan[13] canonicalization.

Canonicalization differences lead not only to different MP2 energies but also to different orbital energies,
and sometimes even different energy ordering among the orbitals. This module requires that trannn has
previously been used to order the orbitals as doubly occupied, followed by singly occupied, followed by
virtual, regardless of their energy ordering. In particular, for triplet and higher spin states, Roothaan
canonicalization may not produce this ordering automatically at the Hartree-Fock step. The user must
verify or produce the required ordering, as the module makes no independent check.

For open-shell cases the output separates the contributions into different excitation patterns and also
lists what we believe are the corresponding designations of the ZAPT procedure used in GAMESSI6].

Format of the <prefix>mp2.inp File:
Line 1: iprt
iprt ‘0’ gives minimal output
‘1’ gives extra output
Line 2: iopt
iopt ‘1’ uses OPT1
‘2’ uses OPT2
This parameter is ignored for closed-shell systems (isomo = 0 below).

Line 3: idomo
idomo number of doubly occupied orbitals outside the trannn core (int)

Line 4: isomo
isomo number of singly occupied orbitals (int)

5.5.2 omtrclII

This module constructs (but does not diagonalize) the CI matrix for the configurations produced by symgenn.
It relies on the configuration orbitals being orthogonal. Table 14 contains the names of the files accessed by
this module.
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Table 14: Files read (above) or written (below) by omtrcIII

Text (t) or
Suffix and Extension  Description Binary (b)
sym.1lul CI configurations b
sym.1u8 CI statistical info. t
core.nrg Nuclear Energy b
trn.I1/ctrn.I1 One-electron integrals b
trn.I2/ctrn.I2 Two-electron integrals b
trn.I2n/ctrn.I2n Two-electron integrals info. t
mat.out Output file t
mat.IIT Hamiltonian matrix in orthogonal basis b
trn.IIT symgenn /orthogonal basis transformation b
obs.III Overlap matrix in symgenn basis b

When the orbitals are real, the discrete-point-group version of symgenn should have been used to create
the configurations and omtrcIII should be invoked with crunch -o. When ctran has been used to produce
complex orbitals, crunch -S0 invokes the correct versions of symgenn and omtrcIII. There are no internal
checks that the right versions are called; that is the user’s responsibility. The code also assumes (without
checking) that the orbitals are indeed orthogonal. Bad results, possibly without a meaningful error message,
will occur if this is not the case.

This module does not require a user-supplied input file.

5.5.3 mcscf

This module performs a multiconfigurational self-consistent-field (MCSCF) calculation in which the molec-
ular orbitals (MOs) and the CI coefficients of configurations containing these orbitals are simultaneously
optimized (see [16], section 4.5 for a brief description). It is based upon the algorithms of Werner and
Meyer[20], although it is not a complete implementation and especially lacks some of their methods for
dealing with difficult convergence. Table 15 contains the names of the files accessed by this module. (Al-
though this might look like a great number, the user can be reassured that several (in particular those
with <prefix>syma.lul, <prefix>emm.int, <prefix>den.G1, and <prefix>den.G2) are intermediate files
written and read by the module, or modules automatically called by it, in a manner invisible to the user.)

The input data can be somewhat involved and small changes can have large effects on the progress of
the calculation. In addition to the input described below, the electron configurations must be determined in
a separate, preceeding run of symgenn using the same file-name prefix.

When it converges, the multidimensional Newton-Raphson method (see [21], chap. 9) used here for root
finding manifests second-order convergence. However, difficult cases do arise when it diverges. This problem
is compounded by the fact that R(O)HF orbitals often provide poor initial guesses for the MCSCF orbitals
and provision has therefore been made for a variety of starting orbitals.

In its most direct usage, the initial molecular orbitals are the R(O)HF orbitals taken from the binary
orbital file produced by gscfnn or mxsscf. It is also possible to start a calculation from the orbitals given in
the <prefix>mchf.orbs file from a previous mcscf run. This enables restart in the case of failed convergence
and even manipulation of the underlying orbital space between runs in an effort to encourage convergence.
In this latter case orthonormality of the MOs is enforced before optimization begins. Finally, symmetrically
orthogonalized functions of the underlying basis (atomic orbitals (AOs), unless trannn has been used in
advance) may be used as the starting molecular orbitals. This is provided in case the R(O)HF orbitals cause
optimization to diverge and in ideal cases will produce convergence in fewer than ten iterations. See the

parameter infile below to choose between these three cases.

The module can be forced to gracefully exit at the end of the current iteration by creating a stpmcscf
file in the working directory (i.e. with the command touch stpmcscf). When detected the module writes
the current MOs to the <prefix>mchf .orbs file, deletes stpmcsct and exits.

As a matter of convenience, the molecular orbitals are divided into a foundation space, an active space,
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Table 15: Files read (above) or written (below) by mcscf

Suffix and Extension Text (t) or
or (Full File Name)  Description Binary (b)
mchf.inp User-supplied input t
sym. lul CI configurations b
sym.1lu8 CI statistical info. t
core.nrg/enuc.dat Nuclear Energy b
trn.I1/lob.I1 One-electron integrals b
trn.I2/lob.I2 Two-electron integrals b
mos.orbs/mos.mchf Molecular orbitals (start or restart) b
(stpmcsct) Signal to terminate gracefully -
syma.lul Modified CI statistical info. b
emm.int Electrostatic moments t
den.G1 First-order density matrix t
den.G2 Second-order density matrix t
mchf.out Output file t
mos .mchf Molecular orbitals b
mchf . gam Gamma matrix t
syma.lul Modified CI statistical info. b
emm. int Electrostatic moments t
den.G1 First-order density matrix t
den.G2 Second-order density matrix t

and an empty space. The optional foundation orbitals are assumed to be doubly occupied in all configurations
and are not even mentioned in the symgenn input, but are assumed to “lie beneath” the orbitals specified
there. The active orbitals are those manipulated and possibly occupied in the symgenn configurations. The
orbitals of both the foundation and active spaces are subjected to optimization, but the foundation orbitals
are always doubly occupied. The empty orbitals, if any, are assumed to be unoccupied in all configurations
(and are also not mentioned in the symgenn input) but complete the basis space in which the orbital
optimization is performed.

In order to freeze doubly occupied R(O)HF molecular orbitals with respect to optimization, trannn must
have been used previously to place them in the core and thus eliminate the corresponding functions from
the basis of the integrals. At present this requires that the symmetrically orthogonalized functions be used
for the initial guess (infile = ‘2’ below).

Integrals from trannn are sought first. If these are absent, lobeWat or atmintc integrals are expected.
Careful cleaning will prevent confusion. (At present, calculations using the complex orbitals from ctran are
not supported.)

The specification of symmetry in this module might seem a bit odd. For the orbitals the transformation
properties of the symmetry species do not need to be specified, but only which orbitals transform in the same
way. If there are nsym symmetry species, they must be given distinct and successive (but otherwise arbitrary)
indices between 1 and nsym with orbitals assigned the appropriate index. (Additionally the active-orbital
symmetry indices given here must not contradict those implied by the orbital transformation table in the
symgenn input.) The symmetry of the MCSCF state is specified as the symmetry of the basis configurations
in the symgenn input in the usual way. (If necessary, revisit the definition of a symmetry species in section
4.3; recall that different components of a degenerate irreducible representation are regarded as different
symimetry species.)

At the end of the calculation multipole electrostatic moments (up through octapoles) for the lowest
energy state are calculated.

Format of the <prefix>mchf.inp File:

The input data are divided into the sections given below. Line numbers are internal to these sections.
Remember that the electron configurations are assumed to have been determined by a separate, preceeding
symgenn calculation using the same file-name prefix.
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e General statistical and convergence information

Line 1: nfound nactiv nstrto iprt
nfound  number of foundation molecular orbitals (int)
nactiv.  number of active MOs (int)
nstrto this is a parameter no longer used, set it to ‘0’
iprt ‘0’ - no extra output
‘1’ - voluminous output
Line 2: norb infile
norb number of basis orbitals (number of AOs minus trannn core orbitals) (int)
infile ‘0’ - initial MOs come from an mos.orbs file
‘1’ - initial MOs come from an mchf . orbs file
‘2" - initial MOs are orthogonalized basis orbitals
Line 3: uuiter ncycles cutoff

uuiter this parameter is not used, set it to ‘0’
ncycles  maximum number of iterations allowed (int)
cutoff convergence threshold for root-mean-squared energy gradient (float)

1.0e-6 works in many cases.

e Orbital Specification
Line 1: iorb(1) iorb(2) ... iorb(norb)
iorb(i) the number of the MO in mos.orbs which is the initial guess
for MCSCF orbital number i (int)
This old-to-new MO mapping is always read, but is ignored unless infile = ‘0’
The first nfound orbitals are foundation, the next nactiv are active,
and the remainder are empty.
Line 2: sorb(1) sorb(2) ... sorb(norb)
sorb(i)  symmetry species index for MCSCF orbital number i (int)
Line 3: dorb(1) dorb(2) ... dorb(norb)
dorb(i) ‘0’ - MCSCEF orbital i is doubly occupied in all configurations
‘1’ - MCSCF orbital i is not always doubly occupied
These values relate to symgenn configurations,
not whether an orbital is in the foundation.
Line 4: lorb(1) lorb(2) ... lorb(nsym)
lorb(i)  label for symmetry species of index i (string, 1-8 char.)
These are only used to help clarify the output.
nsym is the largest of the sorb(i) above.

5.6 Nonorthogonal-Orbital CI Matrix Construction

5.6.1 nomtrcII

This module constructs (but does not diagonalize) the CI matrix for the configurations constructed by
symgenn. It makes no assumptions about the orthogonality of the orbitals. The methods used are described
in [3], especially chapters 5 and 6. Table 16 contains the names of the files accessed by this module.

The algorithms used in omtrcIII are faster then those employed here because of the ability to rely on
the orbitals being orthogonal. Nothing prevents this module from being applied to an orthogonal case, but
that should ordinarily be avoided (unless, for example, an independent confirmation of omtrcIII results is
desired).

When the orbitals are real, the discrete-point-group version of symgenn should have been used to create
the configurations and nomtrcII should be invoked with crunch -m. When ctran has been used to produce
complex orbitals, crunch -SM invokes the correct versions of symgenn and nomtrcII. There are no internal
checks that the right versions are called; that is the user’s responsibility. Bad results, possibly without
a meaningful error message, can occur otherwise. For the real case integral files produced by trannn are
sought first. If these are absent, those from atmintc or lobeWat are used. Careful directory cleaning is again
recommended.

This module does not require a user supplied input file.
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Table 16: Files read (above) or written (below) by nomtrcII

Text (t) or
Suffix and Extension Description Binary (b)
sym.1lul CI configurations b
sym.1u8 CI statistical info. t
enuc.dat/core.nrg Nuclear Energy b
trn.I1/lob.I1/ctrn.I1 One-electron integrals b
trn.I2/lob.I2/ctrn.I2 Two-electron integrals b
trn.I2n/lob.I2n/ctrn.I2n Two-electron integrals info. t
mat.out Output file t
mat.HII Hamiltonian matrix b
mat.SIT Overlap matrix b
nrm.SII Overlap matrix diagonal elements b
core.nrg Nuclear Energy b

5.7 CI Eigensolution
5.7.1 neweig

This module finds the eigenvalues and eigenvectors of the CI matrices produced by omtrcIII and nomtrcII
but is limited to small- to medium-size problems. Table 17 contains the names of the files which may be
accessed by this module, with the exception of a few intermediate working files which are deleted upon
successful completion.

Table 17: Files read (above) or written (below) by neweig

Text (t) or
Suffix and Extension Description Binary (b)
mat.HII Hamiltonian matrix (nonorth.) b
mat.SII Overlap matrix (nonorth.) b
mat.III Hamiltonian matrix (orth.) b
trn.III Symgenn basis transformation (orth.) b
sym.1u8 CI statistical info. t
core.nrg Nuclear Energy b
eig.out Output file t
eig.hs Normalized H and S matrices b
eig.nrg Eigenvalues b
eig.vec Eigenvectors b

When this module diagonalizes a CI matrix produced by nomtrcII (the nonorthogonal case) it solves
the generalized-eigenvalue problem (see [21], section 11.0 for a brief description):

Hz, — E;Sz;
where the overlap matrix, S, is not necessarily equal to the identity. When the orbitals which make up the

configurations are orthogonal and omtrcIII has been used to generate the matrix (the orthogonal case)
there is some economy as the overlap matrix can be assumed to be the identity.

3

The binary files which contain the matrices (and related information) produced by omtrcIII and nomtrcII
have unique names. This module seeks first the products of nomtrcII and, if that fails, those of omtrcIII.
Be sure to clean carefully so that the files used are those intended.

This module is capable of finding any number of the lowest energy eigenvalues and eigenvectors of the
CI matrix, but is not particularly fast, especially as the matrix size grows. The alternative beigII module
is more suitable for larger problems for which only a handful of the lowest roots are desired.

As of the beginning of 2011, a standard desktop machine with 2 GB of memory can, in principle, use
this module to find the roots of a CI matrix involving around eight-thousand symmetry functions (although
that may take a while). Problems with around a thousand configurations can be solved fairly quickly.
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This module does not require a user-supplied input file.

5.7.2 beigll

This module finds a few of the lowest eigenvalues and eigenvectors of CI matrices produced by omtrcIII
and nomtrcII and is to be preferred over neweig for large problems.

We continue in the context of our discussion of the generalized-eigenvalue problem begun in the neweig
section. For the nonorthogonal case (when nomtrcII has produced the matrix), a separate, initial module,
sinv, is automatically called which diagonalizes the overlap matrix. Table 18 contains the names of the files
which may be read or written by sinv, with the exception of a few intermediate working files which are
deleted upon successful completion. Then the main module, beigII begins. The orthogonal case involves
beigII only. Table 19 contains the names of the files which may be accessed by this module.

Table 18: Files read (above) or written (below) by sinv

Text (t) or
Suffix and Extension  Description Binary (b)
sym.1lu8 CT statistical info. t
mat.SII Overlap matrix b
sml.mat Overlap inverse b
mat.siok Signal for successful S inversion -

Table 19: Files read (above) or written (below) by the main portion of beigII

Text (t) or
Suffix and Extension Description Binary (b)
big.inp User-supplied input t
core.nrg Nuclear Energy b
sym.1lu8 CI statistical info. t
mat.HII Hamiltonian matrix (nonorth.) b
mat.SII Overlap matrix (nonorth.) b
mat.siok Signal for successful S inversion -
sml.mat Overlap inverse (nonorth.) b
mat.III Hamiltonian matrix (orth.) b
trn.III Symgenn/ortho. basis transf. (orth.) b
big.out Output file t
big.vec Eigenvectors b

The methods of beigII are iterative and convergence can be profoundly influenced by the nature of the
matrices and the user-specified starting vector. One of two methods is used depending upon the matrix
generator. Following omtrcIII this module employs the original Davidson Method[22]. This is a true N?
method, but in our experience it is not very efficient when H is not sparse. After nomtrcII and sinv the
Gallup Method[23] is used. It is most efficient for nonsparse matrices or in cases in which S is far from the
identity. It is not, unfortunately, an N? method since the inverse of S is required and the matrix inversion
involves an N? algorithm. Once S~! has been found, however, the remainder of the problem is N2.

As the names of the binary matrix files produced by the orthogonal and nonorthogonal generators are
unique, beigII chooses its method based upon the presence or absence of files with particular names. With
careful cleaning make sure that the only matrix files present are those you intend to diagonalize.

As an initial guess to the ground-state eigenvector, the user must specify basis configurations expected to
be significant (but not necessarily the largest) contributors. These must be equal in number to the number
of eigenvalues requested and are specified by the position of the symmetry function in the <prefix>sym.out
list. (Guesses for higher states are derived automatically.) If these principal components are not suggested by
the physical nature of the problem, they might be obtained by using neweig on a smaller problem including
only a subset of the configurations.

Format of the <prefix>big.inp File:
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Line 1: neig prt_evec

neig number of eigenvalues to calculate (int, normally < 5)
prt_evec ‘0’ to skip eigenvector printing
‘1’ to include eigenvectors in the output

Line 2: ibf(1) ibf(2) ... ibf(neig)

ibf(i) symmetry function expected to contribute to the ground state (int)

5.8 Parameter Optimization

5.8.1 smplxtrdg

This module provides a generic and powerful means of optimizing parameters in a calculation with multiple
steps. Table 20 contains the names of the files which may be accessed by this module.

Table 20: Files read (above) or written (below) by smplxtrdg

Suffix and Extension,
us=user-supplied,

or (Full File Name), Text (t) or
XXXXXX is system supplied Description Binary (b)
plx.inp User-supplied input t
us.us Template module input file t
us.out Output file with target value t
us.us Input file created from the template t
(stdout) Output of minimization t
(sedpXXXXXX) Temporary file with sed command t
(nrgyXXXXXX) Temporary file with awk command t

Given its relative complexity, this module might have been reserved for “advanced users.” It is included,
however, mostly because it provides a rudimentary means of optimizing molecular geometry. (The notion
that a quantum chemical suite is incomplete without a means of geometry optimization became widespread
only after the bulk of CRUNCH was written; smplxtrdg is an attempt to bridge that gap.) Illustrations of
geometry optimization at several levels of theory are provided among the examples. The general description
given here may be difficult to follow without consulting one of them.

Much of the complication arises from the need to change parameters in the input file to one module, gauge
the effect on a target value which can be in the output of another module, and then repeat the calculation
with new input parameters chosen to minimize the target (often an energy). Not only are multiple CRUNCH
modules linked together in this way but, in the interests of flexibility, the input parameters to non-CRUNCH
programs called before CRUNCH can be similarly optimized. Thus Table 20 may appear deceptively simple.
Although not directly manipulated by smplxtrdg, the user must supply all of the other input files required
by modules in the chain including input and target.

There is considerable freedom in naming the files used by smplxtrdg but good practice would suggest
that a suitable suffix and extension for the template to a <prefix>lob. inp file might be <prefix>lob.tmp.
The template file is a complete input file but with the parameters to be varied replaced by an alphanumeric
label unique in the file. The sed command is used to substitute the input parameter for the label. After the
chain of modules has been executed, the awk command is used to extract the target value. (Intermediate
files with names made unique by incorporation of a system-generated pseudorandom string, represented by
XXXXXX in Table 20, are created in carrying out these commands.)

The algorithm used to suggest new input parameters and verify the minimal solution is the multidimen-
sional simplex method (see [21], section 10.4 for a short discussion). Although our account and the examples
emphasize geometry optimization it is worth mentioning that smplxtrdg is sufficiently general that it can
optimize any parameters given in a single input file.

This module is not incorporated into the crunch script but must be called directly in the manner of:
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smplxtrdg h2.plx.inp > h2.plx.out

where the standard output has been redirected to an external file where it is available for later reference.
Format of the <prefix>plx.inp File:

The input data are divided into the sections given below. Line numbers are internal to these sections.

e Commands before CRUNCH
Line 1: nbc
nbc number of commands to execute before CRUNCH modules (int)
Next nbc lines: npcomm(i)

npcomm  command number i to execute before CRUNCH (string, < 127 char.)

e Input and template files
Line 1: inpend
inpend suffix and extension of input file to receive inputs (string, < 127 char.)
Line 2: tmpend
tmpend  suffix and extension for template of input file (string, < 127 char.)

e CRUNCH command
Line 1: crcom

creom command to execute chain of CRUNCH modules (string, < 127 char.)

e Qutput manipulation
Line 1: awkc
awke awk command to extract target value from output (string, < 127 char.)
This should be surrounded by single quotation marks.
Line 2: outend

outend suffix and extension of output file with target (string, < 127 char.)

e Parameters to Optimize
Line 1: npar
npar number of input parameters to optimize (int)
Next npar lines: parlab(i) initval(i) delta(i)
parlab(i) label standing in for parameter i in template (string, < 20 char.)

initval(i) initial value for parameter i (float)
delta(i) initial increment for the parameter (float)

6 Example Problems

There are a number of example problems supplied with the source distribution (see the subdirectories beneath
examples). When a systemwide installation of CRUNCH has been performed, this directory can be found
just below the directory containing this manual. In addition to the monograph[3] these example problems
should be of particular help to a new user. Each module (but perhaps not each option of each module) is
exercised by at least one of the examples. To help confirm proper module operation, reference output files
(with names ending in .sve) are included, in addition to the input files used to generate them. Beginners
should work through the examples or, at least, find the example closest to their problem of interest and use
it as illustration and template.

Current example systems include the boron atom, the Hy, BF, BO, HF, Fy, NH, and O, diatoms, and
the polyatomic molecules/ions, CH,, CH4, naphthalene, and imidazolium cation. See README.examples in
the examples directory for a matrix detailing the modules used by each example. Each problem also comes
with a separate READVME file (e.g. examples/hf/dunning/README.hf) which gives further details about the
calculation, including which commands are needed to generate the output files.
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7 Copyright and License

CRUNCH, a molecular structure and properties calculational tool. Copyright©1999 Gordon A. Gallup.
Licensed under the Academic Free License, version 3.0.

http://www.opensource.org/licenses/afl-3.0.php

8 Limitations and Bugs

Perhaps the most serious scientific limitation is the lack of provision for lobe-Gaussian orbitals with 1 > 3.
Of course, off-center Gaussians have been used to simulate large angular momentum functions.

Currently, averaging across iterations and energy-shifting the virtual-orbital eigenvalues of the Fock
operators are the only means of improving convergence in the main single-configuration R(O)HF module
(gscfnn). As a result, SCF convergence can be somewhat slow and occasionally even unattainable. For
systems with appropriate spin the mxsscf module allows somewhat greater control over convergence.

CRUNCH also lacks automatic, tailored geometry optimization. As a partial, and not especially efficient,
solution to this, the smplxtrdg module, agnostic to the nature of the parameters, is provided and can be used
to find the optimal value of any number present in an input file. Expert users can even use this capability
to perform certain types of quantum-chemical calculations not explicitly supported by CRUNCH.

Almost certainly, there are bugs. Nevertheless, the various modules have, over the years, been sub-
jected to vastly different amounts of usage. In our opinion, of the primary modules, the integral and
single-configuration R(O)HF modules are the best tested, followed by trannn, symgenn, the original matrix
generators, and the diagonalizers. The linear-molecule capabilities are some of the newest, the mp2 and mcscf
modules and the new matrix generators have received a modest amount of successful usage, and smplxtrdg,
because of its generality, can be somewhat temperamental.

Bug reports and questions, in general, should be directed to us at the e-mail addresses on the title page.
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11 Appendix with Common SCF Parameters

We give here a few common examples of the spin-coupling parameters, W, «, and g. The molecular orbitals
are grouped into shells according to the Fock operator which describes them and the coupling parameters
circumscribe the interaction of these shells. The parameters are vectors or matrices, W, «, and 3, indexed
by shell. Only common cases with no more than three independent Fock operators are given here. (See
reference [14] for a more exhaustive list.)

e Closed-shell singlets:

These values have already been given, but are repeated for reference. There is only one Fock operator and
so W has one component and « and 8 are 1 x 1 matrices.

W = [2.0]
a = [2.0]
B

e Open-shell, high-spin systems (including a doublet with one singly occupied orbital):

When each of one or more nondegenerate orbitals are occupied with a single electron and the spins of the
electrons are aligned, there are two Fock operators, the first for the underlying closed-shell and the second
for the open-shell.
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W = [20 10|

o _ [20 10
= 110 05
1.0 0.5

A= [0.5 0.5}

If some of the open-shell orbitals are degenerate, these parameters must be used with special care in order
to avoid symmetry-broken solutions. In such cases the state-averaged parameters (see an example below)

must be used to enforce symmetry.

A first-excited singlet:

This is the type of state which would result from spin-preserving promotion of one electron of a closed-shell
singlet into an unoccupied orbital. There are three independent Fock operators, the first for the doubly

occupied orbitals remaining and the remaining two for each of the open shells.

W = [20 1.0 10 ]
[20 1.0 1.0

a = |10 00 05
| 1.0 0.5 0.0
(1.0 05 0.5]

B = |05 00 —05
| 05 05 o.oJ

An open, doubly degenerate shell (above a closed-shell base):

Whether the two orbitals of the open shell are occupied by one, two, or three electrons, there are two Fock
operators, the first for the closed-shell and the second for the open-shell. W5 in each case is 2f where f is

the filling fraction.

One electron yields a 2E state.

W = [20 05]
(20 05
“ = 105 00
1.0 025
B = {0.25 o.o}

Two electrons can give three states: A, 'A, and 'E (see, for example, [11]).

All states have:
W = [ 20 1.0 ]

For 2A:
_ [20 10
“ = |10
1.0
B = 0.5 0.5
For 'A:
~[20 10
“ 7 110 00
1.0 0.5
A = [0.5 0.5}
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For 'E:

~[20 10
“ = 110 025
1.0 05

B = {0.5 0.0]

Three electrons yields a ?E state which is the “hole analog” of the one-electron case.

W = [20 15]
_ [20 15
“ = 115 10
1.0 0.75
B = {0.75 0.5}

e A state-averaged (sp) triplet:

To obtain, for example, the isotropic, excited P state of beryllium (nominal configuration, 1s%2s2p),
state-averaging is necessary. With a doubly occupied base, there are three Fock operators and the required
parameters are:

w [2 1 1/3]

2 1 1/3]
10 1/6
1/3 1/6 0 J
[ 1 1/2 1/6 ]
B =|1/2 0 1/12
[1/6 112 0 J

.l
|

Other state-averaged calculations may require even more Fock operators. In their Appendix A Carbo and
Riera[14] give another simple example and the author of [13] gives a number which are not as simple (but
readers are cautioned that the spin-coupling parameters in [13] are defined somewhat differently from the
Carbo-Riera parameters used in CRUNCH).
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